最少回纹切割数(Palindrome Partitioning II)

题目:给定一个字符串,把这个字符串切割成若干段,使得这些小段都是回纹串,求最少要切几刀(即小段回文串的个数减一)。

分析:先用动态规划法求得任意子串是否是回纹,用str表示字符串,用f[i,j]表示从字符i到字符j组成的子串是否是回纹,
j-i < 2时,即子串只有一个字符或者两个字符时
f[i,j] = str[i] == str[j]
其他情况,
f[i,j] = f[i+1,j-1] && str[i]==str[j]
求得任意子串是否是回纹后,则可以用来下面对最小切分数的求取。
首先我们用dp[i]表示从第一个字符到第i个字符所成子串的最小切分数,我们可以理解,当f[j,i]=true时,
dp[i] = min(dp[j,i] +1) 0<=j<=l。初始条件我们设为dp[0] = -1,
因为j<=i当j==i时f[j,i]必为true,所以上述式子一定成立。

代码如下:


#include <iostream>

#include <string>

#include <vector>

using namespace std;

 

int palindrome2(string str){

    int len = str.length();

    vector<vector<bool>> dp(len,vector<bool>(len));

    for(int i = len-1;i>=0;i--){

       dp[i][i] = true;

       for(int j = i+1;j<len;j++){

           if(j - i < 2)

              dp[i][j] = (str[i] == str[j]);

           else

              dp[i][j] = dp[i+1][j-1]&&(str[i] == str[j]);

       }

    }

    vector<int> mincutDP(len+1);

    mincutDP[0] = -1;

    for(int i = 1;i<=len;i++){

       mincutDP[i] = mincutDP[i-1]+1;

       int curr = mincutDP[i];

       for(int j = 1;j<=i;j++){

           if(dp[j-1][i-1]){

              curr = mincutDP[j-1]+1;

              if(curr < mincutDP[i])

                  mincutDP[i] = curr;

           }

       }

    }

    return mincutDP[len];

}

 

int main()

{

    string str = "abcdc";

    cout<<palindrome2(str)<<endl;

    getchar();

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值