深入理解大语言模型的文本数据处理流程

1. 引言:文本数据准备的基本流程

大语言模型(LLM)训练的第一步是文本数据的准备。模型无法直接处理原始的文本数据,因为神经网络处理的是数字数据,而文本是离散的符号。为了让神经网络能够理解和处理文本,我们必须将其转化为数字表示。这个过程包括几个关键步骤:

  1. 文本标记化:将文本分割成较小的单位,通常是单词或者子词。
  2. 词嵌入(Word Embeddings):将这些分割出的单位(标记)转换为向量形式。
  3. 数据采样:通过滑动窗口或其他方法生成训练样本。
  4. 字节对编码(BPE):一种高级的标记化方法,能够有效处理未登录词(Out-Of-Vocabulary, OOV)。
  5. 创建标记嵌入:将标记ID映射到向量空间,供模型使用。

这些步骤是整个模型训练的预处理阶段,确保输入数据能被模型正确理解。

2. 词嵌入(Word Embeddings)

LLM不能直接处理原始文本,因为文本是由字符组成的符号,神经网络无法直接理解这些符号。词嵌入

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

面朝大海,春不暖,花不开

您的鼓励是我最大的创造动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值