- 博客(419)
- 资源 (4)
- 收藏
- 关注
原创 深度信念神经网络DBN的碳排放量预测
本文研究了基于深度信念网络(DBN)的碳排放量预测方法。DBN是一种深度学习神经网络,通过多层受限玻尔兹曼机(RBM)堆叠实现特征提取和非监督学习。研究构建了包含三个隐含层的DBN模型,使用200次迭代训练RBM层,节点数分别为108、106和125个。实验结果表明,DBN能有效处理大输入数据,通过无监督学习实现自动降维,对碳排放量预测具有较好效果。未来可考虑将DBN与拟合能力更强的神经网络结合,以提升模型性能。该研究为碳排放预测提供了一种新的深度学习解决方案。
2025-12-04 17:10:43
82
原创 基于深度信念神经网络DBN的负荷预测
本文介绍了深度信念网络(DBN)在电力负荷预测中的应用。DBN是一种深度学习神经网络,通过受限玻尔兹曼机(RBM)堆叠构成,具有特征提取和非监督学习能力。文章详细阐述了DBN的基本原理、网络结构和训练过程,包括RBM的能量函数和激活概率计算。通过MATLAB实现了一个三隐含层的DBN模型,采用2600组数据进行训练,结果显示DBN能有效处理大输入数据并自动降维。最后指出DBN的优点是能处理大数据并自动降维,但拟合能力较弱,建议与极限学习机等网络结合以提升性能。
2025-12-03 17:51:26
76
原创 黄牛群算法优化长短期神经完网络
摘要:黄牛群优化算法(CHOA)是由红松科技工作室提出的一种新型群智能优化算法,模拟黄牛群觅食行为中的领导、跟随、随机游走和竞争机制。该算法通过头牛引导、跟随者局部搜索、随机游走增强全局搜索能力以及竞争机制维持种群多样性,具有参数少、鲁棒性强等特点。算法流程包括种群初始化、位置更新规则(头牛自主移动、跟随者更新、随机游走)和边界处理,适用于连续优化问题。实验效果图展示了算法的优化性能。
2025-12-03 15:52:04
23
原创 黄牛群算法优化BP神经网络分类预测
黄牛群优化算法(CHOA)是一种新型群智能优化算法,由红松科技工作室于2025年提出。该算法模拟黄牛群觅食行为,包含头牛引领、跟随者搜索、随机游走和竞争机制四种行为模式。算法通过初始化种群、位置更新规则和边界处理等步骤进行优化搜索,具有参数少、鲁棒性强等特点。实验结果表明,CHOA在函数优化、路径规划和神经网络参数优化等领域表现良好。算法通过模拟黄牛群的自然觅食行为,有效平衡了全局搜索和局部开发能力,为解决复杂优化问题提供了新思路。
2025-12-01 16:41:29
281
原创 人工兔算法详细原理,人工兔算法公式,人工兔算法优化BP神经网络
摘要:人工兔优化算法(ARO)是一种受兔子生存策略启发的智能优化算法。该算法通过模拟兔子的"绕道觅食"和"随机躲藏"两种行为,分别对应全局探索和局部开发。算法采用能量因子机制自动平衡探索与开发,包含三个核心公式:绕道觅食公式实现全局跳跃搜索,随机躲藏公式进行局部精细优化,能量收缩机制控制搜索策略转换。实验结果表明ARO在多种优化问题上表现优异,能够有效避免早熟收敛并找到高质量解。该算法适用于工程设计、路径规划等复杂优化问题。
2025-12-01 16:36:36
96
原创 沙猫算法详细原理流程,公式,沙猫算法优化神经网络
摘要: 沙猫群优化算法(SCSO)是一种新型元启发式算法,通过模拟沙猫在沙漠中的狩猎行为实现全局优化。算法采用灵敏度范围自适应调整策略,分为探索(猎物搜索)和开发(攻击猎物)两个阶段,结合混沌映射初始化增强多样性。改进版本ISCSO引入莱维飞行等策略提升性能,在CEC测试中63.3%场景优于GWO等算法。实验表明,SCSO优化BP神经网络能有效提升预测精度,收敛曲线验证了算法的优越性能。核心创新在于生物行为启发的双阶段优化机制与动态参数控制策略。
2025-11-13 11:09:34
99
原创 跳蛛算法详细原理,跳蛛算法公式,跳蛛算法优化BP神经网络
摘要:跳蛛优化算法(JSOA)是一种受跳蛛狩猎行为启发的元启发式算法,通过迫害策略、局部/全局搜索和信息素更新四阶段实现优化。该算法在单目标优化、三维路径规划和神经网络优化中表现优异,能有效平衡探索与开发,避免局部最优。实验表明,JSOA优化BP神经网络后预测精度显著提升,适应复杂约束条件,适用于多种工程优化问题。(150字)
2025-11-13 00:10:08
53
原创 黄牛群算法详细原理,黄牛群算法公式,黄牛群算法应用
黄牛群优化算法(CHOA)是一种受黄牛群觅食行为启发的新型群智能算法。该算法通过模拟头牛引领、跟随者局部搜索、随机游走增强多样性以及竞争机制四个核心行为机制,实现了高效的全局寻优能力。算法参数少、鲁棒性强,适用于连续优化问题。测试结果表明,CHOA在函数优化中表现出良好的寻优性能,能有效平衡全局探索和局部开发能力,避免陷入局部最优。该算法由红松科技工作室于2025年提出,版权归其所有,需授权方可使用。
2025-11-12 18:20:04
1780
2
原创 野狗优化算法详细原理流程,公式,应用案例-野狗优化算法BP神经网络回归分析
摘要:野狗优化算法(DOA)是一种2021年提出的仿生优化算法,模拟澳大利亚野狗的群体狩猎行为(包括群体攻击、迫害攻击和清扫行为)。该算法通过平衡全局探索与局部开发能力,在函数优化、机器人路径规划等领域展现出优于传统算法的性能。其核心流程包括初始化种群位置,并基于三种狩猎策略进行迭代更新:群体攻击负责全局搜索,迫害攻击实现局部开发,清扫行为则增强随机探索。实验表明,DOA具有收敛速度快、寻优能力强等特点,在优化BP神经网络等实际应用中表现优异。
2025-11-11 21:22:24
42
原创 野狗算法详细原理,野狗算法公式,野狗算法求解目标函数极值
野狗优化算法(DOA)是一种2021年提出的仿生优化算法,灵感源自澳大利亚野狗的群体狩猎行为。该算法通过模拟野狗的三种捕猎策略(群体攻击、迫害攻击和清扫行为)实现全局探索与局部开发的平衡,适用于机器人路径规划、无人机航迹规划等复杂优化问题。DOA具有搜索能力强、收敛速度快的特点,其核心是通过动态调整参数β1和β2来控制搜索过程,并引入生存率机制增强种群多样性。算法流程包括初始化种群、迭代更新位置(基于不同狩猎策略的数学模型)和边界处理等步骤。实验表明,DOA在解决多峰优化问题时性能优于传统算法。
2025-11-11 21:13:58
52
原创 蝙蝠算法详细原理,公式,蝙蝠算法应用案例-BA-BP回归分析
摘要 蝙蝠算法(BA)是一种模拟蝙蝠回声定位行为的智能优化算法。它通过模拟蝙蝠发出超声波、调整频率和音量的特性来搜索最优解。算法流程包括种群初始化、频率/位置更新、随机扰动和参数调节等步骤。BA具有简单高效的特点,但也存在易陷入局部最优、收敛精度不足等缺陷。针对这些问题,研究者提出了多种改进方法,如结合模拟退火的高斯扰动、差分进化算法、局部搜索策略等。改进算法在收敛速度和精度上均有提升,并成功应用于工程设计、分类预测等领域。目前BA在非线性方程组求解等方向仍有待进一步研究。
2025-11-10 14:33:12
739
原创 鸽子算法的详细流程和公式,应用案例基于鸽子算法优化LSTM的回归分析
摘要:鸽群优化算法(PIO)是一种受鸽子导航行为启发的群智能优化算法,由段海滨于2014年提出。算法分为两个阶段:地图与指南针算子模拟鸽子远距离导航进行全局搜索,地标算子模拟近距离定位实现局部优化。该算法通过速度更新公式和位置更新公式迭代求解,具有参数少、鲁棒性强等特点,适用于连续优化问题。MATLAB实现代码展示了算法的具体流程,包括种群初始化、速度更新、边界检查等关键步骤,并通过效果图验证了优化性能。
2025-11-10 14:24:23
247
原创 基于黏菌算法的路径规划
本文提出了一种基于黏菌优化算法(SMA)的路径优化方法。SMA模拟黏菌觅食行为,通过气味追踪、权重调整和位置更新三阶段实现高效优化。相比传统算法,SMA具有动态适应性、多目标扩展能力和抗早熟收敛等优势。实验表明,该方法在物流配送和无人机路径规划中效果显著,如减少配送距离23.4%,缩短无人机任务时间31%。未来将拓展至动态环境适配和多智能体协同规划领域。
2025-11-07 23:54:07
62
原创 长鼻浣熊算法原理,公式,应用案例-coa-bp
长鼻浣熊优化算法(COA)是2023年提出的新型元启发式算法,模拟长鼻浣熊群体协作捕猎(探索阶段)和个体逃离捕食者(开发阶段)两种行为实现优化。算法通过种群初始化、位置更新和贪婪选择三个步骤完成寻优,其中探索阶段采用最优解引导策略,开发阶段通过随机扰动增强局部搜索。测试结果表明该算法在函数优化和神经网络训练中表现出色,具有收敛速度快、寻优能力强的特点。核心公式包括种群初始化、鬣蜥攻击策略和逃离捕食者策略,实现了全局探索与局部开发的平衡。
2025-11-07 08:21:04
38
原创 蚱蜢算法原理,公式,应用案例GOA-BP
蚱蜢优化算法(GOA)是一种模拟蚱蜢群体行为的元启发式算法,通过幼虫局部移动和成虫长距离迁徙分别实现开发与探索。核心原理包括三个分量:社会交互、重力作用和风的影响。算法流程包含初始化、适应度评估、位置更新和参数调整,关键公式涉及社会交互力函数和递减参数c。GOA具有自适应平衡探索与开发的特点,适用于连续优化问题。伪代码展示了其实现过程,实际应用中需调整参数以适应具体问题。
2025-11-04 15:21:39
49
原创 蚁狮算法原理,公式,应用案例-ALO-DBN
摘要: 蚁狮算法(ALO)是一种模拟蚁狮捕食行为的智能优化算法,通过蚁狮设置陷阱、诱捕蚂蚁的过程搜索最优解。其核心包括随机游走、边界收缩和精英策略,逐步缩小搜索范围以提高精度。算法流程涵盖初始化、适应度评估、陷阱构建、捕食更新及终止条件。关键公式涉及蚂蚁移动的边界约束与精英引导机制。ALO具有参数少、收敛快的优点,适用于工程优化和机器学习,但可能陷入局部最优。典型应用包括特征选择和能源调度。
2025-11-04 11:03:35
530
原创 鹈鹕算法原理,公式,应用案例-POA-BP
摘要:鹈鹕优化算法(POA)是一种受鹈鹕捕食行为启发的元启发式算法,通过模拟俯冲捕鱼过程实现优化。算法分为两阶段:探索阶段通过随机步长向最优解移动,开发阶段利用局部搜索系数进行精细搜索。POA具有参数少、效率高的特点,适用于连续优化问题,如工程设计和机器学习调参。实验效果图展示了POA优化BP神经网络的应用效果。(150字)
2025-11-04 09:42:24
57
原创 蜻蜓算法的详细原理,公式,应用案例-基于蜻蜓算法的函数优化
蜻蜓算法(DA)是一种受蜻蜓群体行为启发的智能优化算法,通过模拟捕食、躲避等行为实现寻优。其核心流程包括初始化种群、迭代更新速度和位置(考虑分离、凝聚等五大行为因素),最终输出最优解。该算法通过动态调整行为系数,兼顾全局与局部搜索,适用于函数优化、工程设计和组合问题。改进方向包括与深度学习结合以提升高维问题性能。实验表明,该算法具有收敛速度快、解决复杂问题的优势。
2025-11-03 23:44:17
77
原创 猎豹算法详细原理,公式,应用案例—基于猎豹算法的函数优化
摘要:猎豹优化算法(CO)是一种新型群体智能优化算法,模拟猎豹捕猎行为,包含搜索、静候、攻击和返巢四种策略。该算法通过搜索策略探索全局、攻击策略精细开发,实现全局与局部平衡;动态调整参数提升适应性,返巢机制维持种群多样性。在函数优化、工程设计和组合优化等领域展现出高效性能,具有收敛速度快、鲁棒性强等特点,未来可结合深度学习进一步拓展应用。
2025-11-03 23:16:40
664
原创 鲸鱼算法详细原理,公式,应用案例-鲸鱼算法优化扩展卡尔曼滤波EKF
本文研究了鲸鱼优化算法(WOA)及其在扩展卡尔曼滤波中的应用。WOA模拟座头鲸的捕食行为,通过包围、螺旋攻击和随机搜索三种机制进行优化。算法首先初始化参数和种群位置,然后计算适应度值,采用不同的更新策略逐步逼近最优解。实验结果表明,WOA优化的支持向量机(SVM)在弯沉预测中表现良好。该算法还可应用于其他机器学习模型的参数优化,具有广阔的应用前景。
2025-11-02 15:57:19
109
原创 海洋捕食算法的详细原理,公式,应用案例MPA-BP
摘要:海洋捕食者算法(MPA)是一种受海洋生物捕食行为启发的元启发式优化算法,通过Lévy运动、布朗运动和速度比适配机制实现高效搜索。该算法包含初始化、优化(分速度比阶段)和FADs涡流效应三个阶段,具有自适应参数调节能力。实验表明,MPA在收敛速度和精度上优于传统算法,已成功应用于神经网络优化(如MPA-BP模型)。未来可拓展至多目标优化和深度学习领域。
2025-11-02 12:41:08
97
原创 哈里斯鹰算法的原理,公式和应用案例
摘要:哈里斯鹰优化算法(HHO)是一种受鹰群捕食行为启发的元启发式算法,通过探索、过渡和开发三个阶段模拟鹰群协作捕食策略。核心思想是利用逃逸能量动态调整探索与开发平衡,具有参数少、全局搜索能力强等特点。该算法已成功应用于函数优化、机器学习参数调优及路径规划等领域,尤其在路径优化中展现出快速收敛和优异性能。实验结果表明,HHO能有效避免局部最优,实现精准路径规划。
2025-11-02 11:11:39
40
原创 人工蜂鸟算法的详细原理和公式
人工蜂鸟算法(AHA)是一种受蜂鸟觅食行为启发的群体智能优化算法,通过模拟蜂鸟的方向性飞行、领地觅食和迁徙觅食策略来求解优化问题。算法将解空间视为食物源,蜂鸟个体通过三种飞行方式(轴向、对角、全向)和记忆机制进行觅食。AHA具有参数少、收敛快、全局搜索能力强等特点,在光伏模型参数提取、路径规划等领域展现出优越性能。实验表明,该算法收敛速度较快,在特定函数优化中误差比SSA、WOA等算法降低30%。
2025-11-01 14:21:11
953
原创 基于黏菌算法优化BP神经网络的分类预测
本文提出一种基于黏菌算法优化的BP神经网络分类预测方法。传统BP神经网络采用梯度下降法训练,常陷入局部最优。本研究通过模拟黏菌觅食行为,设计动态权重调整机制和振荡位置更新策略,平衡全局与局部搜索能力。实验结果表明,优化后的网络在150组数据上收敛速度提升,90次迭代即可完成训练,预测精度显著提高。该方法为BP神经网络优化提供了新思路,未来可进一步探索不同激活函数组合对性能的影响。
2025-10-24 17:12:05
30
原创 黏菌算法优化BP神经网络回归分析
本文提出了一种基于黏菌算法优化BP神经网络的方法,用于回归分析问题。传统BP神经网络通过误差反向传播进行训练,但存在收敛速度慢、易陷入局部最优等问题。黏菌算法模拟了黏菌觅食行为的智能优化机制,通过动态调整权重和平衡全局搜索与局部搜索来优化BP神经网络的参数。实验结果表明,该方法能快速收敛(约90次迭代),并显著提高了预测精度。与标准BP神经网络相比,优化后的模型能更准确地拟合时间序列数据。未来可进一步探索不同激活函数和训练函数对算法性能的影响,以提升模型泛化能力。
2025-10-24 16:54:06
140
原创 基于BP神经网络企业风险预测
本文系统介绍了BP神经网络的参数设置、函数选择及训练过程,包括常见训练函数、传递函数、性能函数等的应用场景,详细解析了MATLAB训练窗口的四个组成部分及其功能。通过企业风险预测案例展示了BP神经网络的实际应用效果,结果表明预测准确率较高。文章还提供了相关MATLAB代码实现,对BP神经网络的学习和应用具有指导意义。
2025-10-04 09:44:31
56
原创 基于BP神经网络的曲线拟合
本文系统总结了BP神经网络的参数设置与函数选择方法,详细解析了训练窗口功能,并展示了基于BP神经网络的曲线拟合应用。主要内容包括:1)关键参数设置建议,如迭代次数、学习率等;2)常用训练函数、传递函数等分类说明;3)nntraintool训练窗口的四个组成部分详解;4)曲线拟合实例展示,结果表明该方法具有较高准确率。文章为BP神经网络的实际应用提供了参数调优指导,并通过可视化分析验证了其有效性。
2025-10-04 09:36:54
68
原创 基于粒子群算法优化SVM浓度预测
本文研究了基于粒子群算法(PSO)优化支持向量机(SVM)在浓度预测中的应用。首先介绍了SVM是一种基于间隔最大化的分类器,可通过核函数实现非线性分类。文章详细展示了SVM的线性可分性、损失函数和核函数原理。其次介绍了粒子群算法的原理、参数设置和优化流程。最后通过实例验证代码,对比了优化前后的SVM预测效果,结果表明PSO优化能显著提升SVM的预测精度。,为智能化预测提供了有效解决方案。
2025-10-02 23:23:10
448
原创 BP神经网络情绪识别
摘要:本文系统介绍了BP神经网络的参数设置方法,包括最大迭代次数、学习率等关键参数的选择原则,详细列举了训练函数、传递函数、学习函数等各类函数的作用。文章重点解析了神经网络训练窗口的四个主要组成部分及其热萑,并通过情绪识别案例展示了BP神经网络的应用效果。结果表明,该方法在情绪识别任务中表现出较高的准确率,为相关研究提供了参考。
2025-10-02 23:02:40
42
原创 基于BP神经网络的节点路径预测
本文系统总结了BP神经网络的参数设置与函数选择方法,包括训练函数、传递函数、学习函数等关键组件。详细解析了nntraintool训练窗口的四个核心部分:网络结构、算法设置、训练进度和可视化分析。通过节点路径预测案例展示了BP神经网络的实际应用效果,并提供了参数调优策略。结果表明,合理设置参数对模型性能至关重要,但BP网络在复杂问题上仍面临收敛和过拟合挑战。文末给出了相关实现代码和效果图,为BP神经网络应用提供了实用参考。
2025-10-01 15:49:50
35
原创 基于BP神经网络的评级预测
本文系统介绍了BP神经网络的参数设置与函数选择方法。首先详细说明了6个关键参数(如最大迭代次数、学习率等)的设置原则和调整策略。然后分类列举了常用的训练函数、传递函数、学习函数、性能函数等,并提供了MATLAB实现示例。文章重点解析了BP神经网络训练窗口的四个组成部分及其功能,包括网络结构显示、算法参数、训练进度和性能曲线。最后通过一个评级预测案例展示了BP神经网络的实际应用效果,验证了其预测准确性。本文为BP神经网络的参数调优和实际应用提供了系统性的指导参考。
2025-10-01 15:46:21
46
原创 基于BP神经网络的企业绩效值预测
本文系统总结了BP神经网络的参数设置与函数选择方法,包括训练函数、传递函数、学习函数等关键组件的配置。详细解析了BP神经网络训练窗口的四个核心部分:网络结构、算法参数、训练进度和性能图表。通过企业研发投入预测案例,展示了BP神经网络在实际应用中的效果,验证了该方法的有效性。文章为BP神经网络的使用者提供了从参数设置到结果分析的全流程指导,具有实用参考价值。
2025-09-29 09:00:47
52
原创 基于粒子群算法优化BP神经网络的回归分析
本文提出了一种基于粒子群算法(PSO)优化的BP神经网络模型,用于回归分析。BP神经网络通过误差反向传播算法进行训练,但存在收敛速度慢、易陷入局部最优等问题。文中详细介绍了BP神经网络的基本原理、神经元结构、激活函数及传递函数特性。同时阐述了粒子群算法的参数设置和优化流程,通过群体智能搜索机制来优化BP神经网络的权值和阈值。实验结果表明,该方法能有效提升BP神经网络的预测性能。最后给出了PSO-BP算法的实现代码框架和数据预处理方法,为神经网络优化提供了一种新的解决思路。
2025-09-29 08:41:31
839
原创 Bp神经网络公式导出方法
四,根据权重iw和输入因子和阈值b(1)计算分别计算第一隐含层每个神经元输出,并代入第一激活函数,六,根据权重lw,隐含层输出,阈值b(2)计算输出层输出,并代入最后一个激活函数计算,2,用符合表示公式,可以融合成一个包含矩阵运算的,并且相对比较断的公式,3,把每个步骤的包含参数数值的融合一个公式,参数越多,公式越长。1,每个步骤单独一个小公式,最终的公式包含多个小公式,三,导出bp神经网络的激活函数或者传递函数的公式,一,导出训练好的bp神经网络的权值iw和lw。二,导出BP神经网络的阈值b。
2025-07-15 19:10:25
97
原创 海洋捕食算法优化BP神经网络
本文提出一种基于海洋捕食算法(MPA)优化的BP神经网络模型(MPA-BP),以解决传统BP网络易陷入局部最优的问题。MPA算法模拟海洋生物的三阶段觅食策略(Levy飞行全局搜索、布朗运动自适应调整、涡流效应局部开发),用于优化BP网络的初始权值矩阵和动态学习率。实验在Iris分类和Concrete回归数据集上验证表明,相较PSO-BP、GA-BP等对比模型,MPA-BP具有更快的收敛速度和更高的预测精度,其分阶段优化机制有效平衡了全局探索与局部开发。该方法为神经网络优化提供了新思路,未来可扩展至深度学习架
2025-06-18 16:47:21
191
原创 猎豹算法优化BP神经网络
摘要:猎豹优化算法(CO)模拟猎豹的三种捕食策略(搜索、静候、攻击)及返回机制,通过数学模型实现全局优化,具有动态路径调整和避免早熟收敛的优势。将其与BP神经网络结合形成CO-BP模型,先优化权值阈值,再训练网络,相比标准BP、GA和PSO算法,能有效解决局部最优和收敛慢问题。该模型适用于金融、医疗等领域的非线性预测任务,未来可通过自适应参数调节进一步提升性能。(149字)
2025-06-18 11:41:33
101
原创 基于蝙蝠算法的路径优化
本文提出了一种改进的蝙蝠算法(BA)用于路径优化问题。通过模拟蝙蝠回声定位行为,算法融合频率调谐、速度更新和脉冲发射机制,并引入动态自适应策略与多目标优化框架。实验结果表明,在TSP和物流配送场景中,该方法较传统算法在收敛速度和解质量上均有显著提升,其中TSP测试平均偏差仅0.28%,物流配送路径成本降低15.3%。参数分析显示脉冲衰减率和种群规模是算法性能的关键影响因素。实际应用案例验证了该算法在物流配送和应急救援中的有效性。
2025-06-03 21:52:05
839
原创 基于白鲸优化算法的路径优化研究
本文提出一种基于白鲸优化算法(BWO)的路径优化方法,通过模拟白鲸群体行为实现动态路径规划。算法包含游泳(全局探索)、捕食(局部开发)和鲸落(跳出局部最优)三个阶段,采用混合编码和自适应权重策略,在TSP和无人机路径规划实验中表现优异。实验数据显示,相比传统算法,BWO在路径长度缩短12.3%、安全度提升18.7%,物流配送应用中减少15%车辆需求。该方法具有良好的多目标优化能力和抗早熟收敛特性,未来将扩展至动态环境适配和多无人机协同规划等方向。
2025-06-03 21:38:43
1727
基于LVQ神经网络的分类预测,基于BP神经网络的分类预测的效果图
2025-02-22
斑马算法的MATLAB代码,斑马算法测试效果
2024-12-08
鲸鱼算法算支持向量机SVM回归分析,鲸鱼算法优化支持向量机SVM沉降预测(代码完整,数据齐全)
2024-09-08
基于粒子群优化SVM的空气质量等级分类预测(代码完整,数据齐全)
2024-09-08
基于支持向量机SVM的电网负荷预测(代码完整,数据齐全)
2024-09-08
Adaboost-bp分类预测(代码完整,数据齐全)
2024-09-04
基于支持向量机的冷却系统故障识别,基于SVM的冷却系统故障识别(代码完整,数据齐全)
2024-09-03
基于深度信念网络的冷却系统故障分类识别
2024-09-04
粒子群算法和支持向量机参数反演,pso+svm参数反演(代码完整,数据齐全)
2024-08-21
基于BP神经网络的最大值预测,基于BP神经网络的最小值预测
2024-08-17
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅