基于粒子群算法优化BP神经网络的高炉si预测,PSO-BP

本文介绍了如何使用粒子群算法(PSO)改进传统的BP神经网络,以预测高炉Si。通过结合BP神经网络的非线性映射能力和PSO的全局搜索特性,实现了更精确的预测。实验结果显示,该方法在迭代约90次后误差已收敛,提高了预测准确性。
摘要由CSDN通过智能技术生成

目录

摘要
BP神经网络的原理
BP神经网络的定义
BP神经网络的基本结构
BP神经网络的神经元
BP神经网络的激活函数,
BP神经网络的传递函数
粒子群算法的原理及步骤
基于粒子群算法改进优化BP神经网络的用电量预测
代码
效果图
结果分析
展望
参考

摘要

一般用启发式算法改进BP神经网络都是改成的三层BP神经网络,本用粒子群算法对BP神经网络进行改进,并通过风温,风湿,风压,炉顶温度,泸定压力等对SI进行建模,,实现对SI的预测

BP神经网络的原理

BP神经网络的定义

人工神经网络无需事先确定输入输出之间映射关系的数学方程,仅通过自身的训练,学习某种规则,在给定输入值时得到最接近期望输出值的结果。作为一种智能信息处理系统,人工神经网络实现其功能的核心是算法。BP神经网络是一种按误差反向传播(简称误差反传)训练的多层前馈网络,其算法称为BP算法,它的基本思想是梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。

BP神经网络的基本结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经网络机器学习智能算法画图绘图

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值