Stable Diffusion 是一款功能异常强大的AI图片生成模型,能够让你轻松生成高质量图片,无论是风景、人物、动物还是物品。通过一些方法还能让AI生成的模型更加的可控,让AI真正为你所用,而不再需要去揣摩AI的心理活动。
但是想要使用如此强大的模型还要其他工具辅助,那就是 Stable Diffusion Webu (以下简称 Webul)。
WebUl是一个网页版的图形化操作界面,能够让你非常方便的来控制 Stable Diffusion 模型生成图片时的参数,或通过一些插件来实现生成图片细节部分的控制。
如果你是 Mac 用户,看见网上别人使用windows电脑生成一张张美图也不用美慕。Mac 也是可以安装并使用WebUl 的,也可以尝试安装其他图形界面来使用 Stable Diffusion。比如 Diffusion Bee 或者 nvokeAl,网址如下
Diffusion Bee: DiffusionBee - Stable Diffusion App for AI Art
InvokeAl: https://invoke-ai.github.io/lnvokeAl/
安装建议
-
建议内存小于16G的不要轻易尝试,能用但是不会给你带来比较好的感受,亲测会有各种报错、无法生成图片等问题。 如果只有8G内存还是想体验 Stable Diffusion WebUl。可以查看如下网页了解小内存用户的启动方法。 https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/lnstallation-on-Apple-Silicon#poor-performance
-
由于目前各种神经网络的算法对Mac的系统支持不是很友好,在 Mac 上出图的速度会显著低于 windows上的速度,不过好消息是 pytorch 等算法框架正在积极的改进对Mac系统的支持。目前 M1max 搭配 32G+的内存应该可以获得还不错的体验,保底也至少是 Mlpro + 16G内存,总的来说0内存越大越好,芯片越新越好。
-
硬盘没什么限制软件本体只有几百MB,但是模型往往一个都是3G往上,下模型时请考虑自己的硬盘大小。
安装步骤
鉴于目前网上还没有大佬做过 WebUl Mac版的一键安装脚本和整合包,我们只能手动安装相关依赖和软件。
Step0: 找到你的终端
首先在你的启动台中找到[终端]这个软件并打开它,这是我们后续安装依赖和启动 WebUl 都需要用到的工具。
如果您的电脑里没有他,您可能需要致电苹果客服并向他们投诉。
Step1: 安装必要的工具
以下已经是安装 Stable Diffusion 需要的最少的工具,其他教程中如果写到需要安装如 homebrew ,anaconda 等工具,这些都是用来安装“必要工具”的工具,如果你对命令行一无所知,这些只有增加出错的可能。
-
Git (非必需) Git 是一个版本控制工具,如果你使用 it 安装 WebUl,后期升级 WebUl 会更加的方便,如果您只是想-次性安装,也可以选择不安装 git。Mac上安装 Git 非常简单,只需要在[终端] 里输入如下命令,并根据提示安装 [Xcode Command LineTools] ,点击 install 并一直点下一步就可以。
git --version
-
以下为可选安装方式 或登陆苹果开发者网站,下载最新版本进行安装。 或安装 GitHub Desktop 客户端,同样也会自动安装Glt工具 或使用 homebrew 执行以下命令安装
brew install git
入出现如下红款中的字样,说明你的电脑里已经安装了git工具。
-
Python 3.10
目前最新版的 Mac 系统中应该是已经自动安装了 Python 3.9 的版本,但是 3.9 对 SD 支持并不好(明显影响出图的速度),但是也不要安装3.11 会无法启动 WebUl,我们需要安装 3.10 的版本 a.打开python的官网,在Download页面下方找到 3.10 最新的版本,目前是 3.11.3
b.进入页面后找到File下的 macOS 64-bit universal2 installer,点击下载
c.下载完成后双击打开安装,一直下一步即可
d.安装完成后会自动打开python的安装目录,先别急着关。如果没打开可以去应用程序目录下查找。双击运行 Install Certificates.command 来安装python的证书,否则 SD 可能无法下载插件。
e.此时在终端中输入如下命令应该能看到正确的版本输出。如果看到对应的版本说明你已经完成了pythorw的安装,如果没有或者还是3.9的版本请继续后面的步骤(目前版本为3.11.3)
python3 --version
f.如果输出其他内容或版本号不是你安装的版本号,请执行以下命令,执行完后关闭终端并重新启动,重复一步,看到正确版本号说明安装成功。
第一条命令 touch ~/.bash profile 第二条命令 echo export PATH="/Library/Frameworks/ Python. framework/Versions/3.10/bin:${PATHJ! alias python="/Library/Frameworks/Python.framework/ Versions/3.10/bin/python3” >> ~/.bash profile #请确保上方的版本号与您安装的版本一致,只需要前两位 #如您安装的3.19.19,上方的版本号就是3.10
-
可选的其他安装方式 使用 homebrew 安装
brew install python3
使用 anaconda 安装,自行百度
Step2: 安装 WebUl
将下面命令中的 {安装位置} 替换为你想要安装的目录,例如你想要安装在文档目录中则替换为 ~/Documents
1.如果你在上一步中已经安装了Git,则只需要运行下面的命令
git clone http://ghproxy.com/https://github.com/AUTOMATIC1111/stable-diffusion-webui [安装位器
2.如果没有安装Git工具,可以访问以下链接,手动下载
或前往官方Github页面下载,下载后解压 zip 文件
3.修改配置
打开WebUl所在的文件夹,找到 webui-macos-env.sh 文件,右键使用 文本编辑 打开。修改其中 torch 和 torchvision 的版本到最新版本。目前最新版本为 torch = 2.0.0torchvision = 0.15.1 。修改完成后保存关闭.
可以通过如下命令查看最新版本
查看 torch 最新版本 pip3 install torch== 查看 torchvision 最新版本 pip3 install torchvision==
4.启动项目
在终端中前往安装目录
cd[安装目录}/stable-diffusion-webui 例如安装在 文档 目录下则使用如下命令 cd ~/Documents/stable-diffusion-webui
5.运行项目
./webui.sh
首次启动此过程时间会比较长,如果超过20分钟还没有看到如下画面请考虑使用代理。
如看见 Running on local URL: http://127.0.0.1:7860 则启动成功。
此时访问 http://127.0.0.1:7860 就可以打开WebUl
6.以后每次启动请重复第4步,启动后不要关闭[终端]窗口,直到需要关闭 WebUl 时再关闭【终端】 至此你已经完成了WebUI的安装。但想要生成图片还需要下载模型和插件
开始使用:
1.安装中文汉化和必要插件
打开 WebUl后,前往 Extensons = Available ,取消选 localization 并 点击 Load form。
如果点击后显示 Error,可能是安装 python 时,Install Certificates.command 没有执行,或者你的网络环境无法访问 github
在加载的列表中找到以下插件并并点击右侧的 [Instal] ,附上 github 地址如果无法安装可以前往网页手动下载
-
zh CN Localization : https://aithub.com/dtlnor/stable-diffusion-webui-ocalization-zh
-
CNComposable LoRA : https://github.com/opparco/stable-diffusion-webui-composable-lora.git
-
sd-webui-controlnet : https://github.com/Mikubill/sd-webui-controlnet.gitOpenPose
如果是手动下载的请解压并放入 WebUI 目录下的 extensions 文件夹,自动下载的也会下载到这里
回到 Installed 目录下,点击 Apply and restart Ul,重启界面后你就会发现页面已经更改为中文界面。
2.模型下载
现在WebUI虽然可以启动,但是左上角的模型列表是空的,我们还需要下载具体的模型来生成图片。模型相当于图片的数据集,为了生成不同风格的图片我们就需要不同的模型。
能够下载模型的网站
-
Hugging Face: Hugging Face 是一个 A 开发社区,里面不仅有图相关的 AI 模型还有其他机器学习相关的模型下载。缺点是没有图片预览,如果知道具体名称可以去这里下载
-
Civitai: 简称C站,比较常用,模型都有预览图,并且附上了生成图片时的提示词
-
SD 的 Discord 官方频道: 可以去 models-embeddings 频道下翻翻
-
publicprompts: 模型比较少,但是有一些有意思的模型和提示词
首先我们需要下载一个Checkpoint的模型,查看图片左上角的 Tag
以这个Counterfeit举例,点击下载
下载完成后将下载的模型放入 stable-diffusion-webui → models →Stable-diffusion 文件夹
接着重新启动WebUl,现在可以在左上角的模型列表中找到刚刚下载的模型
最后输入正面和负面提示词 (可以先拷贝模型例图中的提示词),点击生成就可以开始出图了
最后附上一张秋葉大佬的一图流说明