最近一字节员工在网上发帖,说自己18年入职到现在一股没卖过,辛辛苦苦攒了8400股。按照字节跳动第二轮员工期权回购计算,离职员工税前回购价格为 128 美元 / 股,在职员工为 160 美元 / 股,他应该是在职,总的金额是134.4万美元,折合人民币900多万。
一网友直接回复:千万富翁。不得不说有时候选对公司真的很重要,很多人一辈子都挣不了900多万,有的人轻轻松松几年就挣到了。
有的网友说:还得是大厂,直接财富自由了。其实财富自由倒不至于,在一线城市买套房还是没问题的(别买10万/平以上了,买个小两房还是足够的)。
还有的说当时给了8000股最后没去。
还有网友直接说:好羡慕。
--------------下面是今天的算法题--------------
看完了字节员工的收入,我们来看一道字节的面试题,这题是LeetCode的第150题:逆波兰表达式求值。一网友在字节面试的时候遇到过这道题。
问题描述
来源:LeetCode第150题
难度:中等
给你一个字符串数组 tokens ,表示一个根据逆波兰表示法表示的算术表达式。请你计算该表达式。返回一个表示表达式值的整数。
示例1:
输入:tokens = ["2","1","+","3","*"]
输出:9
解释:该算式转化为常见的中缀算术表达式为:((2 + 1) * 3) = 9
示例2:
输入:tokens = ["4","13","5","/","+"]
输出:6
解释:该算式转化为常见的中缀算术表达式为:(4 + (13 / 5)) = 6
1 <= tokens.length <= 10^4
tokens[i] 是一个算符("+"、"-"、"*" 或 "/"),或是在范围 [-200, 200] 内的一个整数
问题分析
这题是逆波兰表达式求值,非常简单的一道题。我们平时书写的表达式是中缀表达式,运算符在中间,操作数在两边,比如a+b。逆波兰表达式是后缀表达式,操作数在前,运算符在后,比如 a b + 。还有一个是前缀表达式,也是波兰表达式,是运算符在前,操作数在后,比如 + a b 。
对于我们人来说中缀表达式是最容易计算的,但对于计算机来说更容易计算的是前缀表达式和后缀表达式。关于前,中,后三种表达式的相互转换有堆栈法,二叉树法和括号法,具体可以看下算法秘籍中的第十三章。
对于逆波兰表达式的计算我们只需要使用一个栈即可,遍历字符串数组,如果遇到数字就入栈,如果是运算符就从栈中弹出两个数字,先出栈的是右值,后出栈的是左值,他们计算的结果也要入栈。
JAVA:
public int evalRPN(String[] tokens) {
Stack<Integer> stack = new Stack<>();
int num1, num2;
for (String token : tokens) {
if (isSignal(token)) {
// 如果是运算符,就从栈中连续弹出两个数字。
num1 = stack.pop();// 右值
num2 = stack.pop();// 左值
if (token.equals("+")) {//加法
stack.push(num2 + num1);
} else if (token.equals("-")) {//减法
stack.push(num2 - num1);
} else if (token.equals("*")) {//乘法
stack.push(num2 * num1);
} else if (token.equals("/")) {//除法
stack.push(num2 / num1);
}
} else { // 如果是数字,就把他压入到栈中
stack.push(Integer.parseInt(token));
}
}
// 最后栈中只有一个元素,取出即可
return stack.pop();
}
// 判断是否是符号
private boolean isSignal(String token) {
return "+".equals(token) || "-".equals(token)
|| "*".equals(token) || "/".equals(token);
}
C++:
public:
int evalRPN(vector<string> &tokens) {
stack<int> stk;
int num1, num2;
for (string &token: tokens) {
if (isSignal(token)) {
// 如果是运算符,就从栈中连续弹出两个数字。
num1 = stk.top();// 右值
stk.pop();
num2 = stk.top();// 左值
stk.pop();
if (token[0] == '+')//加法
stk.push(num2 + num1);
else if (token[0] == '-') {//减法
stk.push(num2 - num1);
} else if (token[0] == '*') {//乘法
stk.push(num2 * num1);
} else if (token[0] == '/') {//除法
stk.push(num2 / num1);
}
} else {// 如果是数字,就把他压入到栈中
stk.push(stoi(token));
}
}
// 最后栈中只有一个元素,取出即可
return stk.top();
}
// 判断是否是符号
bool isSignal(string &token) {
return "+" == token || "-" == token
|| "*" == token || "/" == token;
}
C:
// 判断是否是符号
bool isSignal(char *token) {
return strlen(token) == 1 && !(token[0] >= '0' && token[0] <= '9');
}
int evalRPN(char **tokens, int tokensSize) {
int stk[tokensSize], top = 0;
int num1, num2;
for (int i = 0; i < tokensSize; i++) {
char *token = tokens[i];
if (isSignal(token)) {
num1 = stk[--top];// 右值
num2 = stk[--top];// 左值
if (token[0] == '+') {//加法
stk[top++] = num2 + num1;
} else if (token[0] == '-') {//减法
stk[top++] = num2 - num1;
} else if (token[0] == '*') {//乘法
stk[top++] = num2 * num1;
} else if (token[0] == '/') {//除法
stk[top++] = num2 / num1;
}
} else {// 如果是数字,就把他压入到栈中
stk[top++] = atoi(token);
}
}
// 最后栈中只有一个元素,取出即可
return stk[top - 1];
}
Python:
def evalRPN(self, tokens):
stack = []
for token in tokens:
if token in '+-*/': # 判断是否是符号
num1 = stack.pop()
num2 = stack.pop()
stack.append(str(int(eval(num2 + token + num1))))
else:
stack.append(token)
return int(stack[0])
笔者简介
博哥,真名:王一博,毕业十多年,《算法秘籍》作者,专注于数据结构和算法的讲解,在全球30多个算法网站中累计做题2000多道,在公众号中写算法题解700多题,对算法题有自己独特的解题思路和解题技巧,喜欢的可以给个关注,也可以下载我整理的1000多页的PDF算法文档。