RS Meet DL(78)-CFM:结合3D卷积的FM模型

本文详细介绍了CFM(Convolutional Factorization Machines)模型,它结合了3D卷积和因子分解机FM,用于解决推荐系统中特征交互的建模问题。CFM通过自注意力机制池化层、外积交互层和3D卷积层,有效地捕捉特征间的高阶交互。文章涵盖了模型的各个组成部分,包括输入和嵌入层、自注意力池化、交互层、3D卷积层以及模型训练细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文介绍的是IJCAI-19的一篇论文,题目为《CFM: Convolutional Factorization Machines for Context-Aware Recommendation》,将卷积神经网络和因子分解机FM相结合,提出了CFM模型,一起来学习下!
论文下载地址:https://www.ijcai.org/Proceedings/2019/0545.pdf

1、背景

在推荐系统中,提升模型效果的一个很关键的方面是建模特征之间交互关系。那么目前存在的方法主要包括两种:

1)人工进行特征交叉,如逻辑回归模型,这需要很强的专业知识和业务理解。

2)由模型自动进行特征交叉,如因子分解机FM。但是FM模型在进行特征交叉时,对特征对应的嵌入向量使用的是求内积的方法,这隐含了一个前提,嵌入向量不同维度之间是相互独立的(因为内积是对位相乘),而没有考虑嵌入向量不同维度之间的关系。如特征f1对应的嵌入向量是[x1,x2,x3],特征f2对应的嵌入向量是[y1,y2,y3],那么FM在做内积的时候,只有x1y1,x2y2,x3y3,而x1y2、x1y3等没有考虑。

为了解决上述的问题,本文将FM和卷积神经网络相结合,提出了Convolutional Factorization Machine (CFM) ,一起来学习一下。

2、CFM模型

2.1 整体概述

CFM模型的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值