本文介绍的是IJCAI-19的一篇论文,题目为《CFM: Convolutional Factorization Machines for Context-Aware Recommendation》,将卷积神经网络和因子分解机FM相结合,提出了CFM模型,一起来学习下!
论文下载地址:https://www.ijcai.org/Proceedings/2019/0545.pdf
1、背景
在推荐系统中,提升模型效果的一个很关键的方面是建模特征之间交互关系。那么目前存在的方法主要包括两种:
1)人工进行特征交叉,如逻辑回归模型,这需要很强的专业知识和业务理解。
2)由模型自动进行特征交叉,如因子分解机FM。但是FM模型在进行特征交叉时,对特征对应的嵌入向量使用的是求内积的方法,这隐含了一个前提,嵌入向量不同维度之间是相互独立的(因为内积是对位相乘),而没有考虑嵌入向量不同维度之间的关系。如特征f1对应的嵌入向量是[x1,x2,x3],特征f2对应的嵌入向量是[y1,y2,y3],那么FM在做内积的时候,只有x1y1,x2y2,x3y3,而x1y2、x1y3等没有考虑。
为了解决上述的问题,本文将FM和卷积神经网络相结合,提出了Convolutional Factorization Machine (CFM) ,一起来学习一下。
2、CFM模型
2.1 整体概述
CFM模型的