《深度学习推荐系统》-阅读笔记

本文详述了推荐系统的重要性和架构,回顾了从协同过滤到深度学习的发展历程,探讨了深度学习模型如AutoRec、Deep Crossing在推荐系统中的应用,并介绍了Embedding技术与注意力机制在推荐系统中的关键角色。最后,文章讨论了推荐系统的实时性、评估方法和工程实践。
摘要由CSDN通过智能技术生成

本文是《深度学习推荐系统》一书的阅读笔记和思维导图,建议大家入手一本王喆老师的新书,看完绝对会收获颇丰!


一、互联网的增长引擎--推荐系统

1、推荐系统的作用

  • 解决在信息过载的情况下,用户高效获得感兴趣信息的问题

  • 提高产品的用户转化率,得到公司商业目标连续增长的目的

2、推荐系统的架构

逻辑框架

  • 对于用户U,在特定场景C下,针对海量的物品信息,构建一个函数f(U,I,C),预测用户对特定候选物品I的喜好程度

技术架构

  • 数据部分

    • 数据收集

      • 推荐模型所需的样本数据

      • 推荐模型所需特征

      • 系统监控、商业智能所需的统计数据

    • 数据加工

      • 客户端及服务器端实时数据处理

      • 流处理平台准实时数据处理

      • 大数据平台离线数据处理

  • 模型部分

    • 召回层

    • 排序层

    • 补充策略与算法层

    • 评估模块:离线评估和线上A/B测试


二、前深度学习时代-推荐系统的进化之路

1、协同过滤--经典的推荐算法

  • 协同过滤是协同大家的反馈、评价和意见一起对海量的信息进行过滤,从中筛选出目标用户可能感兴趣的信息的推荐过程

  • 基于用户的协同过滤UserCF

    • 更强的社交性

    • 适用于发现热点

  • 基于物品的协同过滤ItemCF

    • 适用于兴趣变化较为稳定的应用

  • 推荐结果的头部效应明显,处理稀疏向量能力弱

2、矩阵分解算法-协同过滤的进化

主要方法

  • 特征值分解:只适用于方阵

  • 奇异值分解:计算复杂度高

  • 梯度下降:主流方法

    • 目的是原始评分与用户向量和物品向量的内积的差尽量小

    • 加入正则化避免过拟合

    • 加入用户和物品的偏差向量消除偏差

  • 优缺点

    • 优点:泛化能力强、空间复杂度低、更好的扩展性和灵活性

    • 缺点:不方便加入用户、物品和上下文特征

3、逻辑回归-融合多种特征的推荐模型

  • 综合利用用户、物品、上下文多种不同特征,生成较为全面的推荐模型

  • 训练方法:梯度下降法、牛顿法、拟牛顿法

  • 优势

    • 数字含义上的支撑:广义线性模型的一种,假设y服从伯努利分布

    • 可解释性强

    • 工程化的需要:并行化、模型简单、训练开销小

  • 局限性

    • 表达能力不强、无法进行特征交叉、特征筛选等

4、从FM到FFM--自动特征交叉的解决方案

  • 多维度特征交叉的重要性:“辛普森悖论”

  • POLY2模型--特征交叉的开始

    • 暴力进行特征组合

    • 训练复杂度高、稀疏数据下大部分权重得不到有效训练

  • FM模型-隐向量特征交叉

    • 为每一个特征赋予一个对应的隐向量

    • 更好地解决数据稀疏性问题

    • 线上推断过程简单,更容易进行线上部署

    • 不易扩展到三阶特征交叉

  • FFM模型-引入特征域的概念

    • 域可以简单理解为采用one-hot编码形成的一段

深度学习推荐系统领域有着广泛的应用。下面是一些关于深度学习推荐系统笔记: 1. 数据表示:深度学习推荐系统通常使用向量表示用户和物品,将它们映射到低维空间中。常见的方法包括使用Embedding将用户和物品ID转换为密集向量表示。 2. 神经网络模型:深度学习推荐系统使用神经网络模型来学习用户和物品之间的复杂交互关系。常见的模型包括多感知机(Multi-Layer Perceptron,MLP)、卷积神经网络(Convolutional Neural Networks,CNN)和循环神经网络(Recurrent Neural Networks,RNN)等。 3. 个性化排序:深度学习推荐系统可以通过学习用户行为数据,预测用户对物品的喜好程度,并根据预测结果对物品进行个性化排序。常见的模型包括基于DNN的排序模型和序列模型,如Wide & Deep模型、DeepFM模型和Transformer模型等。 4. 强化学习:深度学习推荐系统可以与强化学习相结合,通过与环境交互来优化推荐策略。常见的方法包括使用深度Q网络(Deep Q-Network,DQN)和策略梯度方法等。 5. 多任务学习:深度学习推荐系统可以同时处理多个任务,如点击率预测、商品推荐和用户画像等。多任务学习可以通过共享模型参数来提高模型的泛化能力和效果。 6. 可解释性:深度学习模型在推荐系统中通常具有较强的表达能力,但其可解释性较差。为了提高可解释性,可以使用注意力机制、解释性模型和推荐解释等方法。 这些是深度学习推荐系统的一些关键概念和技术。当然,实际应用中需要根据具体问题和数据进行选择和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值