周末愉快!来看几篇面筋涨涨经验~
写在前面
本人学渣一枚,春招实习有幸过了几家大厂,在此期间得到了很多帮助,也特意分享一下自己的经验,希望能帮助到有需要的人。
阿里
阿里的面试周期最长,最初2月份参加预面试,到正式面试到收offer,经历了2个月。
一面:1h
面试讲项目
项目中为什么使用lightGBM,比起xgboost的优点是什么
因果词向量的应用场景
tf多个变量如何共享权重
SGD min-SGD的区别
对epcho做shuffle,类似于哪一种优化器
介绍一下优化器
什么情况下不适用动量优化器
WGAN,要保证梯度平滑,使动量优化器容易过拟合,防止梯度突变
介绍一下生成任务的做法
用auto-regression的模型
beam-search,如何在做生成任务的时候,生成多个结果并且保证结果的多样性
非自回归的模型如何一次性生成整个句子
做后序遍历,判断一个数组是否满足后序遍历
机器翻译的最新论文
二面:1h
部门leader面,主要问项目,项目难点在哪里
介绍attention 和self.attention区别
算法题目:
给定x种硬币,凑齐y元
给2种硬币,非均匀,计算正反面的概率,随机选1枚,抛100次,重复1000次,如何计算2种硬币的概率
阿里3面(交叉面)
只能只用两个api :getcolour O(1) --获取指定位置的颜色 Swap:ij 交换位置
lr模型的输入和输出分别是什么
lr对商品进行点击进行概率预测,输入需要做一些什么处理
Lr---对商品,估计商品点击的概率--预测
什么情况下需要将连续特征离散化--- One-hot
lr按照分布需要将特征如何进行离散化
树模型如何处理离散型特征
lr模型---根据做特征交叉,为什么
lr中如何缓解过拟合
减轻特征工程的手段,--如何构建更多的特征
coding题目:黑盒子,n是3的倍数个球,3种颜色,n个球排成一排,乱序 rgb
腾讯微信
一面挂
学习率/优化器(adam)/bach-normalzation/➕res+learn-rate
一种可行的方案是用拒绝推断
一种方案是用smote
自我介绍+询问简历内容
词向量的方法
正负样本不均衡的问题,如何解决
介绍bert;bert如何使用transformer的encoding模块-bert的输入和transformer有什么不同
bert有什么缺点
XGboost和GBDT
xgboost做树的分类的时候是怎么做的--
做过哪些nlp深度学习的任务
深度学习模型在训练过程中如何加速收敛
防止过拟合
mse和交叉熵的区别----为什么用交叉熵
一对父母,已知一个人是男孩,另一个人是男孩的概率
给100亿个数据,怎么找到中位数
腾讯PCG
pgc一面:(30min)
主要聊项目
pcg二面:
模型学习中,正负样本的训练方式不同有什么影响
引入词向量的相似性对于结果有什么不好的影响
面试题目:给两个球,求解最坏情况下走多少步(采用贪心的思想)
pcg3面:(交叉面)
主要问项目
相似性匹配的常用算法
bert
头条
算法岗挂,后来大数据岗通过面试,主要在这边记录算法岗的面试经验
一面
问了bert ,transformer
用梯度下降的思路求开根号
写交叉熵公式
防止过拟合的方法
transformer的中的attention机制,其中self-attention和encoder-decoder attention之间的关系
最小二乘法的推导公式,最小二乘究竟是什么,和极大似然的关系
在词向量中很稀疏和出现未登录词,如何处理
线性和非线性存在什么关系之间的关系
logistic和svm之间的区别---svm自带正则化
依存句法如何实现---涉及crf-序列标注
快手
nlp和风控工程师
一面
问项目,着重问了第一个项目
然后两道算法题,bugfree
问了batch-normalization和layer-normalization的区别,然后问在inference线上模型如何处理
FNN-中有没有隐层
inference-batch-nor---针对一条输入
二面
position位置,信息
transformer为什么用+不用concat
Drop-- 实现方式上是否会有差别----train 和test上有什么区别
train会有一定概率抛弃,test会保留全部,train会除以概率
dropout 和L1 和l2是什么关系,有什么异同
做题--两种方法实现
paypal
数据科学家岗位
一面二面同时:
项目+场景题
如何防止过拟合,dropout为什么可以防止过拟合
sql的题目
具体问项目,问具体的实现策略
三面
acc recall f1
变量与target相关性的描述
特征组合
特征重要性判断
模型好坏的评估
分数映射是否符合正态分布