自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学姐带你玩AI的博客

专注AI专业干货,AI前沿资讯,职业发展指导。

  • 博客(792)
  • 收藏
  • 关注

原创 因果机器学习热度攀升,成顶会顶刊 “加分项”,想发论文就认准它!

【摘要】因果机器学习成为AI研究热点,在医疗、商业等领域展现应用价值。本文综述15篇顶会顶刊论文,涵盖单细胞基因组学、电商退货优化、交通影响分析等方向,重点介绍创新方法如cellSCM模型、个性化绿色轻推策略、双重稳健学习框架等,并探讨医学治疗预测的个体化应用。研究强调需突破简单模型套用,关注理论优化与跨领域融合。附开源代码助力复现研究。(149字)

2025-09-03 10:57:57 516

原创 2025年多模态+CLIP最新创新点!

最近看见不少关于的讨论,确实这方向算是当前AI研究的前沿焦点之一,非常热门。不过如今关于CLIP的研究已经相当成熟,如果想以此发论文,单纯的复现或简单应用显然是不够的,推荐大家往深层次问题、拓展应用边界、提升模型效率等方面考虑,机会更多。我根据最新的研究进展给大家分享几个有潜力的创新方向,每个方向我都配上了相应的,方便大家理解并用作baseline参考。全部论文+开源代码需要的同学看文末。

2025-09-02 10:14:03 341

原创 改注意力机制还能创新吗?北大DeepSeek给出答案,全新模型实现算力效率飞跃

大家有关注ACL 2025的最佳论文吗?北大DeepSeek那篇原生稀疏注意力NSA不出所料成为焦点,实现了算力效率飞跃,获得了Meta 4.5分的高分!这种对传统注意力机制的改进非常值得我们学习!要知道,早几年这方向光改层数就已经算不上创新了,如今最常见的还是根据任务场景魔改注意力机制。现在,NSA、Kimi的MoBA、华为ESA等扎堆出现的研究又给我们开拓了思路!

2025-08-29 18:03:16 791

原创 清华带飞!小波变换 + Mamba 火了!绝对是当下发文好方向!

清华团队在图像去雾领域又玩出了新花样!将小波与Mamba模型结合,通过两阶段处理实现高效去雾,在多个数据集上都取得了SOTA效果!仔细看来,目前有关小波变换+Mamba的优秀成果可不止这一个,比如面部伪造检测(WMamba)、红外图像超分辨率(IRSRMamba)、高光谱图像分类(WaveMamba)等,无不证明了这一组合的有效性!同时也说明了,现在这方向正处于快速上升期和红利期,尚未饱和,还存在不少机会。而且从上述成果来看,这方向创新的切入点很多,可以从架构设计、理论深化、应用开拓等多个维度入手。

2025-08-29 10:41:18 401

原创 ICLR 2025高分:不规则时间序列新突破!效率狂飙25倍!

时间序列这个方向,可谓经久不衰,但现在它已经相当之卷了...那么今年,还有什么可以做的?我推荐不规则时间序列(irregular)。众所周知,不规则时间序列研究处理的是相邻观测值时间间隔不一致的数据,这类数据现在越来越多,需求越来越大(智能传感设备的普及),所以这方向近年来越发受重视,而且已经发展到了和深度学习前沿模型结合的阶段。这点可以从顶会上相关论文的数量和主题上看出,比如效率提升25倍的ICLR25高分成果。

2025-08-27 18:34:51 391

原创 SHAP可解释分析才是王道!几行代码轻松发一区,厉害!

写论文找不着创新点?推荐关注SHAP可解释分析!最近一区顶刊关于它的高分文章频出!我简单看了部分,发现这些研究大多是把SHAP落地到新领域,再聚焦 “可解释” 核心,门槛远没想象中高。再加上,SHAP可解释分析的实操性超强!几行代码就能计算 SHAP值,给我们直观展示每个特征对模型预测的贡献,ML模型难解的 “黑箱” 问题轻松搞定,还能大幅提升模型透明度与可信度!鉴于如此好处,医疗、金融等对可解释性要求高的领域都对SHAP可解释分析十分青睐,现在这方向已经成了学术、工业界双热门,顶会顶刊产出稳定。

2025-08-27 10:14:44 554

原创 发文黄金方向:强化学习在医疗领域的应用!顶会顶刊青睐、创新点扎堆

之所以这么说,一方面是因为这方向现在还处于早期快速发展的阶段,有很多待解决问题和提升空间,容易找到创新点;另一方面,这是一个典型的交叉学科领域,而跨学科相关的研究,目前很受不同领域顶会顶刊欢迎。比如首次将RL应用于医学图像定位的MedGround-R1,在三个医学图像定位数据集上都取得SOTA性能,收录于MICCAI 25。另外还有一些成果,也强烈推荐论文er研读。这里为帮大家节省查找资料的时间,我挑选整理了12篇高质量新论文,附上开源代码,无偿分享~

2025-08-25 18:43:05 644

原创 炙手可热!多模态医学图像处理!最新idea霸榜CVPR

多模态医学图像处理通常包括图像采集与质控、核心处理、特征分析、临床落地4个部分。其中,核心处理(包括分割、融合、配准)、特征分析(包括分类、特征融合),以及临床落地都是当前学术界与工业界关注的焦点,投稿热度持续攀升。本文将结合最近的研究进展(CVPR 2025尤其多),帮大家梳理多模态医学图像处理这些方向的热点课题,以便快速找到创新点,正确设计实验流程,撰写论文的方法学部分。

2025-08-22 16:58:45 594

原创 新型激活函数性能全面领先!仅需一行代码,轻松替代现有激活函数!

激活函数又有新工作了!最值得关注的TeLU仅一行代码接入,就吊打现有激活函数,性能全面领先!除此之外,港大的Higher-order-ReLU通过引入高阶多项式形式,拟合精度和训练效率远超ReLU!不过可以看出,目前关于ReLU及其变体的改进仍然是激活函数研究中的一个重要部分。但对于论文er来说,激活函数已经进入了“深水区”,除了改进之外,也需要更多元化的创新路径。比如训练策略创新、硬件协同设计、专用场景定制、自动化设计等方向,都是很有潜力的创新切入点,没思路的同学可以尝试。

2025-08-22 10:00:44 319

原创 大模型OUT!英伟达新型小模型开源,比Qwen3快6倍!

大模型神仙打架的时代,小模型也开始卷起来了!谷歌才推出自家0.27B轻量小模型不久,英伟达就发布了一款9B小模型Nemotron Nano v2,推理速度比Qwen3快了6倍!实际上,英伟达此前就提出过小模型才是智能体的未来,实力证明了小模型强劲的发展势头!而且相较于大模型,小模型对算力要求不高,仍然存在大量创新空间,也许一个巧妙设计/新颖架构/高效trick,就能带来显著提升,构成一篇高质量成果!

2025-08-21 11:58:46 259

原创 都2025了,卡尔曼滤波居然还这么好用!

有人问:卡尔曼滤波现在已经很成熟了,研究生做这个还有希望毕业吗?问自然是有的。还记得23年活跃的因子图优化、不变卡尔曼滤波、最优输运的粒子滤波这三个发展分支吗?在2025年依旧有热度,出成果不是问题。不过现在更多的还是卡尔曼滤波和深度学习的结合,比如主流的LSTM+卡尔曼滤波混合架构,其他热门技术诸如YOLO、Transformer、SAM等也颇受青睐。除此之外,同属新兴技术融合的强化学习+卡尔曼滤波也相当受欢迎。

2025-08-20 09:59:11 895

原创 (CVPR 2025)超越传统卷积!更强劲的自适应卷积,即插即用!

最近,CVPR 2025上的一种即插即用的自适应卷积变体引起了广泛注意,它突破了传统卷积形状,刷爆了遥感图像融合的SOTA!强烈建议相关方向的同学研读。除此之外,自适应卷积近期还有很多高区成果发布,看样子顶会接受率相当稳定。不过简单看了点觉得,这方向现在的发文门槛越来越高了,如果大家想有所收获,还是得深挖(比如审稿人重点关注的可解释性),或者往交叉领域探探路。而且根据近期研究趋势来看,自适应卷积的未来爆发点在于它与多模态学习、边缘计算的结合,建议感兴趣的同学抓紧。

2025-08-18 17:10:48 902

原创 荣登Cell新贵1区Top!基于Transformer的多模态图像融合迎来新突破!

看了看最近的顶会顶刊,多模态图像融合可真热门,尤其是Transformer加入后。比如登上Cell子刊的那篇综述,强调了Transformer+多模态图像融合在早期诊断和个性化治疗中的潜力。又比如CVPR 2025上的这篇GIFNet,在多个图像融合任务上都实现了卓越的性能,同时计算成本极低!另外还有不少双一区TOP成果...研究热情相当高涨。如果有论文er感兴趣,强烈建议先看看这些成果,了解前沿进度也好找思路,我已经替你们整理好了,目前有12篇,都是2025最新,代码已附!

2025-08-18 11:01:54 335

原创 YOLO改的好,审稿专家拒不了!

最近看了不少YOLO的论文,加上前不久YOLOv13也出来了,YOLOv14更是即将出世。我就梳理了一遍YOLO各版本的技术突破,以及YOLO相关的一些热门改进思路。这些思路我从技术本质、作用方式和场景适配性等角度做了分类(看下文5点),既能帮助论文er理清不同技术在模型改进中的定位、作用机制及关联关系,便于组织论文结构;也方便研发er快速定位技术在流程中的位置,明确各阶段的优化重点。YOLO各版本以及每个分类都附有参考论文+开源代码,共整理了113篇,另附20+缺陷检测数据集,供大家学习。

2025-08-15 14:17:08 594

原创 多模态特征融合现在火爆了,没思路的同学赶紧来看这几个idea!

为什么都说多模态特征融合容易出创新?因为这方向拥有很多顶会审稿人眼中的“富矿”,比如跨模态对齐机制,这可是现在工业界的卡点,需求爆炸!要知道今年想冲顶会关键就是“解决工业界痛点”,加上如今各种新架构又催生了新一代融合方法,这多模态特征融合可谓是自带问题复杂性+算法创新性双buff了。今天就给大家推荐这方向能出novelty的几个创新思路:认知启发式融合(当前热点)、面向稀缺模态的轻量化融合(省钱首选)、世界模型驱动的具身融合(EAI是大趋势之首)。

2025-08-14 11:58:05 313

原创 时间序列预测方向卷SOTA不如卷这个!

时间序列预测还能做什么创新?不知道大家还记不记得ICLR2023的patchTST,这模型距提出也不过2年,最近一看引用已经1500+了,感觉也是很有潜力的研究主题。值得一提的是,去年SOTA都是按照patchTST做的基线,而且现在它的核心机制还没饱和,优化点也很明确,比如计算效率、应用场景这些,围绕它做研究还是有很大的创新空间的。如果大家有兴趣,我今天就来推荐patchTST相关4个值得投入的创新方向。每个方向都附上了最新论文,帮助大家理解,论文共有12篇,有代码,大家也可用作baseline参考。

2025-08-12 18:01:44 884

原创 2025年多目标优化最新创新点有哪些?

最近研究了一波的最新进展,发现了几个超有潜力的创新方向!于是整理了一下来和大家分享。每个方向我都配上了相应的前沿论文,方便大家理解并用作baseline参考。,已分类,有代码,只要是想靠多目标优化发论文的,相信都能用的到!全部论文+开源代码需要的同学看文末。

2025-08-11 18:34:04 682

原创 2025时间序列相关顶会论文盘点(附原文源码)

本文梳理 2025 各大顶会有关时间序列 & 时空领域的最新研究成果,一共 246 篇,附开源代码,包含 IJCAI、ICLR、AAAI、ICML、WWW、ICDE、KDD、SIGMOD,供大家参考。全部论文+开源代码需要的同学看文末时序预测:90篇时序分类:18篇时序建模:7篇时序大模型:4篇异常检测:18篇表示学习:6篇可解释性:3篇时间patch:16篇基础模型:4篇时序数据处理:7篇时间序列生成:7篇不规则时序:6篇应用-金融:2篇应用-医疗:2篇时空领域:6篇。

2025-08-08 18:09:46 944

原创 论文破局利器:目标检测DETR!高创新性+低竞争度

现在目标检测这领域,Yolo系列改进空间已经被压榨的所剩无几了,要想发论文,不如选DETR。尤其RT-DETR,更有新意,卷的人少很多。DETR的优势在于精度高,但速度上略逊色,还比较烧卡...因此未来的创新重点在“好用不贵”,即训练速度、边缘部署、任务泛化上。更具体点就是Query设计的高效化、工业界刚需的轻量化特征融合、跨模态自监督预训练等,没思路的论文er可以尝试切入。

2025-08-08 13:48:00 475

原创 结合创新!ResNet+Transformer“黄金上分搭档”!审稿人直呼内行

时至今日,许多大领域都离不开ResNet和Transformer这两种结构,其中ResNet更是成为了21世纪被引量最多的论文!这种背景下,ResNet抓细节+Transformer建模全局的黄金搭档,依然是科研“金矿”,在医疗/工业质检等垂直领域还是刚需,远没到退场的时候。而且近期随着硬件优化和多模态融合,这组合更香了,顶会上每届都有一批变体,很明显还能继续卷!不过现在光靠“结构微调+刷点”是行不通了,需要结合垂直领域痛点,往计算代价控制、复杂数据等深入才有机会。

2025-08-07 11:16:55 636

原创 (CVPR 2025)动态卷积超进化!清华新作炸场,即插即用,性能横扫SOTA!

动态卷积让CNN老树开新花!它自适应能力,以及计算硬件友好的优势起码还能在工业界再战五年!而且这方向理论门槛不高、易出增量成果,可以说是论文er的避险赛道。尤其今年,这方向在顶会顶刊上依然很吃香,光CVPR 2025就有OverLoCK、FDConv、清华LSNet(性能爆炸)等多篇成果,很明显还没卷到饱和。而且现在工业落地比“刷点”更重要,只要方法能带来显着效率提升,短文也能中顶会(比如ICCV的Industry Track)。

2025-08-06 10:32:31 467

原创 多模态融合近期比较好发论文的方向!

多模态融合,AI领域的“当红炸子鸡,前景可以用 “星辰大海” 来形容。这领域好发论文,但想发顶会顶刊,就得学会避坑,暴力融合不可取!今天就帮大家梳理一下多模态融合近期容易出成果的几个方向,另附20篇参考论文+开源代码方便各位学习,都是最新,包含顶会顶刊成果。全部论文+开源代码需要的同学看文末。

2025-08-05 10:01:09 731

原创 结合深度学习+组合优化,小小Nat Commun,拿捏~

近年来,深度学习凭借数据驱动、并行计算和动态建模的优势,在组合优化领域取得了显著的进展。而且随着算法的优化、硬件的升级,它也正逐渐成为复杂组合优化问题的主流解决方案。不过很显然,泛化性能、计算成本等依然是这方向难以突破的挑战,但从学术角度来讲,这些对论文er来说可都是创新突破口。比如今年我就已经在AAAI、Nat. Commun.看见相关成果了,中稿率可观。就目前来看,这方向的发展前景不仅依赖于技术创新(比如预训练框架、可解释性技术),更与物流、金融、制造等行业的数字化转型需求深度绑定。

2025-08-01 17:00:51 725

原创 多模态数据融合火了,想要高分可以这么做!抓紧上车卷一篇!

工业界喊了十年“多模态”,现实却是模态缺失、异构、低质量成了常态。在这种需求爆炸,但数据稀碎的情况下,现在对多模态数据融合的研究可不是一般的火。结合最新顶会动态和工业痛点来看,如今这方向基本还是围绕编码器-解码器、注意力机制、GNN、生成神经网络等主流方法进行优化,建议大家先找些新论文了解技术进展再入手。为节省大家找参考的时间,我整理好了26篇多模态数据融合前沿论文,包含上述主流方法,代码也有。现在这方向还是有点卷的,技术迭代必然很快,大家感兴趣就抓紧上车。全部论文+开源代码需要的同学看文末。

2025-08-01 10:22:41 410

原创 锁定中科院1区TOP!融合LSTM与Attention做时间序列预测 !

Transformer虽火,但在数据少、要求稳的时序预测场景中,LSTM仍是首选。尤其加上注意力机制后,更是弥补了LSTM的短板,增强了性能,实现了更精确的预测。这种组合不仅应用场景广泛,工业界爱,学术界也很是认可。对于论文er来说,它比纯Transformer好复现,又比单LSTM容易发论文。而且最近陆续上榜了好几篇中科院一区TOP成果,看出来很适合想发中高区的同学入场了。不过只堆模块肯定不行,建议多绑实际场景,从注意力结构改造、损失函数设计、非平稳性分解切入。

2025-07-30 17:07:20 458

原创 时间序列关于可解释性值得关注的论文汇总(含代码)

CV和NLP领域已经卷上天了,想必各位论文er“深受其害”,今天就给大家推荐一个竞争相对较小、潜力巨大的前沿领域——众所周知,时序模型是金融、医疗、交通等高风险、高敏感度领域的基石,而这些应用场景对模型的可解释要求非常高。因此,时间序列的可解释性研究也是我们至关重要的课题。从我最近梳理的来看(含顶会顶刊),如今的研究重心正从追求纯粹的预测准确性,转向寻求可信赖、可理解、可干预的AI系统。也推荐各位论文er参考这些论文,站在前人的肩膀上做出创新。全部论文+开源代码需要的同学看文末。

2025-07-29 16:33:56 668

原创 Mamba+特征匹配,突破效率与性能的平衡极限,涨点起飞!

在特征匹配领域,传统方法已经刷不动指标了,不妨考虑Mamba。现在Mamba+特征匹配是块香饽饽,既能蹭上SSM的热度,又具备解决实际问题的潜力,MIT(新作MambaGlue)都在做。它效率与精度的双重优势、强大的泛化能力,以及在轻量化需求下的极高适配性,让这方向在近半年的顶会顶刊中相当受欢迎,光CVPR25就看见不少(效率性能双UP的Jamma)。不过看样子它的“红利期”也持续不久,想发论文的同学抓紧。如果想快速出成果,可考虑找个垂直场景(医疗/遥感优先),构建轻量级混合架构;

2025-07-28 16:07:27 951

原创 SAM升级!医学图像分割新突破!

医学图像分割领域迎来新突破!SAM模型凭借出色的泛化能力,正成为解决医学图像标注难题的利器。近期CVPR2025、IEEETMI等顶会顶刊密集发表相关成果,显示该方向研究热度高涨。本文精选15篇最新前沿论文(均含开源代码),涵盖半监督学习、自适应提示、3D适配等创新方向。代表性工作包括:通过无监督提示和偏好优化的半监督分割框架;引入时间适配器和置信记忆的SAMed-2;自动生成3D提示的Self-Prompt-SAM等。这些研究通过"微创新"解决医疗场景特定问题,为研究者提供丰富技术参考

2025-07-25 17:30:56 374 1

原创 目前MLLM的研究有哪些比较好的切入点?

MLLM确实是当下的研究热点,从Meta最近在多模态模型上下的功夫就能看出来。如果有想法切入,现在入场也不算晚,长尾问题还有模态扩展问题一堆。这方向门槛比较低的切入点可以考虑小目标推理增强、多模态指令调优优化、工业异常检测,方便快速出成果。想冲CVPR/AAAI/NeurIPS,就试试效率提升、认知机制、啃视频/具身、伦理合规等。比起单模态LLM,MLLM现在还处在“蓝海混战”阶段,想发论文的抓紧把握窗口期。我这回准备了70篇MLLM前沿论文,包含近三年代表性模型,开源代码已附,需要参考的自取。

2025-07-21 17:18:25 938

原创 登上Science子刊封面的硬核idea:端到端强化学习!

是什么让华科微软地平线争先发文?原来是端到端强化学习!先是性能提升3倍的RAD,再是首个基于GRPO的自动驾驶大模型AlphaDrive,以及纯视觉SOTA模型ReCogDrive,甚至还有的登上了Science子刊封面...只粗略一看,就能体会到端到端RL如今的热门程度,尤其在具身智能和大模型决策这俩赛道,真真是火力全开!其实端到端RL现在就像10年前的深度学习—— 框架未定,山头林立,可发挥空间大,对于论文er来说,是绝好的发文选择。

2025-07-16 17:17:42 562

原创 把“傅里叶变换、注意力机制”组合在一起,这篇文章你一定要看

傅里叶变换+注意力机制,科研界的“当红炸子鸡”!它解决了AI模型的两个致命痛点——长程依赖建模效率低,和复杂信号特征捕捉不充分,应用价值显而易见!自清华FoPE等陆续发布于ICML25之后,这种组合热度飙升,又因其“故事”易讲,创新点包装灵活,成为了顶会顶刊持续青睐的“真香”方向!但值得注意的是,死磕通用架构早已不是这方向发文首选,深入某个垂直领域,针对性解决问题,再讲好故事,想必审稿人会更有兴趣。比如考虑“领域定制滤波”,可快速出成果;

2025-07-14 17:05:56 356

原创 超强组合!CNN+RNN!!

今天聊聊CNN+RNN。这组合确实不算新潮了,但在特定赛道,比如结合新问题或新架构时,还是很有“闷声发论文”的潜力的。还记得新架构TTT吗?在当前纯CNN+RNN结构堆砌难发好文的情况下,这就是一种突破。还有“老结构新问题(农业/生物)”、“新解释(神经机制)”等方向,都是CNN+RNN老树还能开新花的好选择。因此如果有论文er感兴趣,不妨一试。想快速出成果,就做做应用创新;想冲顶会顶刊,可以考虑TTT架构+神经科学解释。本文整理了10篇CNN+RNN前沿论文,帮助各位了解最新进展,找准思路。

2025-07-11 16:29:16 759

原创 顶刊发表:时空预测新突破!精度超10+倍,速度超100+倍

近期,北大团队提出了一个时空预测新架构U-RNN,已发表在Journal of Hydrology(一区TOP)。实验证明,其精度超过现有AI模型10+倍(MAE),速度超过机理模型100+倍!可见到了2025年,时空预测相关的研究有了相当大的突破,如今不仅技术瓶颈松动,应用场景也在疯狂扩张,顶会顶刊成果数目也直线上升。但很显然,对于论文er来说,纯算法创新在这方向已经很难过稿了,未来在能源、交通等垂直领域深挖场景+新技术(比如LLM)适配方面更易突围。

2025-07-10 18:20:05 551

原创 2025必火的发文方向:特征融合+目标检测

分享一个理论有深度(多模态对齐/分布偏移)、场景有痛点(自动驾驶/医疗)、技术有突破空间(动态融合/神经符号结合)的研究方向:特征融合+目标检测。根据近期成果,目前这方向正处在技术突破和应用爆发的双重风口,灌水容易,但想做出深度比较难。建议新手尝试从跨模态鲁棒性切入,加个动态权重分配模块,冲二区问题不大。如果要求比较高,想狙TPAMI这类顶刊,可以试试把脉冲神经网络扩展到多模态融合。

2025-07-08 17:34:31 1021

原创 只打高端局的多模态融合,用可解释性再次霸榜CVPR!

有人问可解释的多模态融合到底是不是坑?答曰:卷,但机会犹存。根据CVPR 2025投稿数据,多模态+可解释是三大热门之一,而工业界也同样渴求可解释性...因此这方向可以说需求爆炸,痛点深重,还是很值得卷一卷的。不过对于论文er来说,目前纯刷榜的“可解释后处理”已经越来越难中了,必须把可解释性设计进模型底层。也就是说,发文思路推荐:架构创新 > 垂直应用 > 后处理工具。创新点可着力关系推理、具身解释、边缘部署等。其实说白了,就是找个工业界痛点(如医疗误诊、机器人事故),用可解释性解决它。

2025-07-07 17:15:36 893

原创 2025年Graph+AI Agents最新创新思路

AI Agent,一个当下科技领域特别火爆的概念。发展至今,它规划、记忆、协调等核心功能在处理复杂关系方面遭遇了瓶颈...那么该如何解决?来人,上Graph!Graph以其高效关联分析能力,结合Agent的自主决策优势,完美实现复杂关系的高效推理与动态决策!鉴于如此优势,Graph+AI Agents自然成为了一个高潜力、强创新的研究方向,不仅拥有广泛的应用场景,相对应的学术研究也十分火热。但在多模态扩展、高效协作、深度推理三方面,这方向仍然存在空白,强推各位论文er关注!

2025-07-04 17:28:02 678

原创 多模态医学图像创新突破,成果登上Nature正刊!

医学人工智能领域有个很火的方向:多模态医学图像。最近,哈佛等团队在Nature正刊上发表了相关文章,讲述了多模态生成式AI在医学图像解读中的应用,非常值得该方向的同学研读。实际上,多模态医学图像的论文在顶会/顶刊接受率向来高,尤其近半年,多项工作入选CVPR、AAAI、中科院TOP刊等。这方向虽然竞争日益激烈,但在罕见病诊疗、基层医疗、多组学融合等场景仍然存在大量创新空间,如果想发论文,还是很推荐关注的。

2025-07-03 17:08:14 805

原创 Nature+CVPR双杀!Transformer热度狂飙,何恺明、李飞飞都参与了

要问哪个是当下最流行的模型结构,那必然是Transformer。尤其近几年,因为LLM大行其道,我们对Transformer的探索热情成倍上升。具体体现在各方大佬发布的诸多成果上,比如李飞飞团队的FlowMo、字节seed出品的SAIL、何恺明CVPR2025新作、微软Spectformer...CVPR/ICLR/nature methods等顶会顶刊上相关研究也数目繁多,可谓盛况空前。细看之下,Transformer目前主要有两大创新路径:改进和应用。

2025-06-30 17:40:01 766

原创 PINN又爆创新!算法小改,百倍加速!

学术界大明星PINN又新爆了不少好东西,近期的就有权威期刊JCP2025上的VS-PINN,算法小改一下,就比原生PINN加速近百倍!另外还有个经典作Stiff-pinn,单单今年就被引100次!需知PINN能大大降低实验难度,是“水”论文的一把好手,这波爆发想必又有发挥(搞创新)空间了~细看这俩的创新算是PINN的优化与训练策略类,除此以外,PINN还有自适应、采样与离散化、与其他技术结合等主要创新路径,尤其自适应,物理方程不够,神经网络来凑;

2025-06-27 18:25:06 529

原创 左手Nature,右手CVPR!持续学习(Continual Learning)才是2025发文捷径!

深度学习中,“灾难性遗忘”是个不可避免的问题,而持续学习的出现打破了这一困境,它能让模型在多个任务间顺序学习而不遗忘旧知识,同时具备适应新任务的能力。鉴于如此优势,持续学习的研究一直是AI领域的核心议题,目前也正处于爆发期。结合2025年最新动态(CVPR25的SEMA、nature子刊的CH-HNN),创新主要聚焦突破单一任务的局限,具体点说就是结合联邦学习、元学习等交叉技术,向多模态、动态环境、资源高效、可解释性等方向演进。

2025-06-25 17:17:49 528

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除