- 博客(855)
- 收藏
- 关注
原创 多模态目标检测这几个新套路又发了ICCV/CVPR,太香了!
如今,多模态目标检测正向构建统一、高效、能处理复杂真实场景的模型方向发展。从当前研究动态来看,其前沿热点主要集中在四个方面:统一架构设计、面向缺失/噪声的鲁棒学习、与多模态大模型结合提升语义理解,以及开放词汇检测以突破固定类别限制。问哪个发文更好?这就要看你情况,有资源想冲顶会,就试试MLLM+检测,这是当前最热的前沿,不过竞争激烈。想求稳,就在统一框架或开放词汇方向上,针对现有模型的某个具体弱点提出一个精巧改进,并配上扎实的实验。
2026-01-28 18:21:16
697
原创 频域+Transformer!顶会优先推荐思路,发文效果显著!
频域+Transformer这个方向的核心吸引力在于,它给Transformer的黑箱机制提供了个全新的、可解释的理论视角,并带来了实质性的性能与效率提升。因此它在当前是非常热门且适合发表高水平论文的方向,从顶会到顶刊都有不少成果。比如TMM 2025的Frefusion框架、IEEE TGRS的FGNet模型、ECCV 2024的FADformer框架...从这些研究中可以看出,这方向接下来的创新将更侧重于理论深度、架构通用性、领域延展性以及软硬协同。如果想入手,建议基于现有成果找突破口。
2026-01-28 13:37:03
275
原创 多模态特征融合发Paper是给这些人玩明白了
现在关于多模态特征融合的研究,很多时候还是蛮力融合,效果自然不稳定。这种情况下,如果还想在这方向有所收获,就不能只靠简单的拼接了,推荐你集中火力搞动态自适应融合机制。这个核心思路就是让模型学会“看菜下饭”,根据当前输入的内容和任务,自己决定什么时候、用什么方式、融合多少视觉和语言信息。这点子非常符合顶会的口味,直指现有方法的痛点,不仅有清晰的动机,又容易设计出精巧的模块,还方便设计丰富的消融实验来证明有效性。
2026-01-27 11:45:32
600
原创 Mamba+YOLO优势互补,全面碾压传统YOLO!实现高精度、高速度、低复杂度
觉得YOLO卷无可卷了?AAAI 2025上的Mamba YOLO模型或许可以给你新的启发。这是一款创新的实时目标检测器,结合了Mamba与YOLO两大热门模型,实现了精度与实时性的最优平衡。显然,如此成果得益于Mamba+YOLO最核心、最根本的优势——兼顾性能与效率,而这也是这方向受到高度关注的根本原因。到了现在它已经是顶会顶刊持续关注的热点了。创新方面,虽然这方向关于基础架构,也就是Mamba-YOLO已经被提出了,但在架构改进、轻量化、多模态融合、跨任务应用等方面还是有很多空间可以挖掘的。
2026-01-21 18:24:31
524
原创 Nature:物理信息深度学习前沿创新思路
聊一个经久不衰的热点:物理信息深度学习PIDL。近几年它有个非常值得关注的成果:刊登在《Nature Reviews Physics》上的权威综述Physics-informed machine learning。对于想做这方向的同学来说,这篇文章可以说必看,因为它能帮你快速掌握PIDL的核心演进脉络,紧跟PIDL的创新趋势:未来这方向的突破将集中在网络结构优化、训练效率提升和跨学科应用三大方向。全部论文+开源代码需要的同学看文末。
2026-01-20 18:24:40
463
原创 何恺明团队重磅新作:简单Transformer即可实现高分辨率像素空间图像生成SOTA性能!
Transformer这块又有新突破了!麻省理工学院何恺明团队发布了一项颠覆性研究JiT,重塑了扩散模型的生成范式,无需tokenizer、无需预训练、也无需额外的损失函数即可成为强大的生成模型!究其原理,这项成果是Transformer在视觉生成领域的功能性改进与应用创新,属于Transformer两大主流创新思路中的改良派,还是那种直指问题根源的根本性反思类,给我们提供了一个非常好的创新切入点示范!因此,在大多数人都在做加法、堆叠更复杂的模块时,建议你也可以试试在主流任务中针对关键瓶颈进行深度改进。
2026-01-14 10:19:46
641
原创 Science子刊超绝idea:注意力机制+强化学习!足式机器人障碍穿越首次达成 100% 成功率
近期,注意力机制+强化学习这个方向迎来了重磅突破。苏黎世联邦理工学院机器人系统实验室在《Science Robotics》(IF=26.1)中提出了一种创新的控制框架:该框架通过结合强化学习和多头注意力机制,让机器人在面对不同类型地形时,能做到精准判断和灵活适应,从而实现100%障碍穿越成功率!值得一提的是,当前注意力机制+强化学习这个方向已从方法创新阶段进入了性能优化和应用拓展阶段,而这篇顶刊成果,正是该趋势在机器人控制领域的完美范例!对于想做这个方向的论文er说,属于必看文章!
2026-01-13 10:30:14
770
原创 机器学习可解释性的研究进展!
机器学习可解释性的发展已经从解释决策到理解心智,从解决信任问题到解决控制问题。根据这个趋势,本文从解释的焦点与深度入手,将机器学习可解释性的现有工作分成了四大类:局部可解释性方法、全局可解释性方法、基于规则的解释性方法、机制性解释性方法。这四类方法是理解该领域的基本框架,而当前的前沿工作就是在这四类的交叉地带进行探索与突破。比如《Advanced Science》的CellPhenoX,搭配的局部解释+机制性解释。
2026-01-09 18:21:04
659
原创 做“自适应PINN”的赢麻了,连发TOP刊的感觉太爽了!
自适应PINN之所以热门,本质是因为它通过机器学习策略,去解决传统PINN训练中老大难的收敛问题和效率瓶颈,从而让训练过程更智能、更高效。举个例子,不久前发表在IEEE TII的一种基于PINN自适应优化控制方法,就是通过数据与物理的持续学习提升了训练效率与精度。这背后反映了研究趋势:从凭经验手动调,到让算法自己去动态优化。鉴于此趋势精准戳中了AI4S的核心痛点,这方向的价值可谓不可估量,而现在正是入场的好时机!结合目前的趋势,我觉得损失函数+对称性/守恒律、新架构、高维复杂应用等比较有搞头。
2026-01-09 10:48:30
366
原创 Transformer+UNet,发文的不二选择!思路设计得好,顶会没烦恼
Transformer与UNet的结合在近两年已经成为图像分割、生成等任务的标配架构。顶会和相关顶刊持续接收该方向的创新工作。就发文情况来看,这对组合虽然火了好久,确实竞争激烈,但在轻量化、跨模态适应、3D/视频扩展、可解释性等细分方向还是有不少创新空间的。如果能在特定应用场景中解决现有局限(数据稀缺、模型效率这类),也很容易产出论文。讲更具体点,比如眼科OCT分割、病理切片分析等数据特征鲜明的垂直领域就是好选择,能凸显方法的针对性。
2026-01-07 18:00:25
882
原创 时间序列因果推断,发 CCF A 不再难!
推荐一个顶会顶刊关注度高的方向:时间序列因果推断。这方向是当前机器学习和统计学交叉领域的热点,正处于高产、高影响力的发展阶段,非常值得投入。就看近期的一些成果,比如ICLR 2025的CausalRivers,当前规模最大的真实世界时间序列因果发现基准套件!从创新思路方面来看,它属于设计/增强评估与基准,这类方向很适合想冲顶会的朋友尝试。另外还有一些思路,比如轻量级方法改进、交叉应用,更适合想快速出成果的朋友,可参考的工作也不少。
2026-01-06 18:07:41
878
原创 小波变换+Mamba 新突破!跟紧这波热度,下一个中稿顶会的就是你!
最近在IEEE TGRS上又刷到许多关于mamba+小波变换的成果,比如WDP-Mamba框架、国防科大的CWIMamba、WD-SSMamba模型,速度起飞...当然顶会成果也是不少,像ACM MM '25 Oral的新型特征提取器WMamba、CVPR 2025的轻量级视觉网络框架MobileMamba...总之,自从这方向从24年初开始逐渐热门后,到了如今正处于红利期。鉴于这对组合现在发文还比较容易,我建议有论文需求的同学趁这会儿还没卷的时候赶紧上车。
2026-01-05 18:04:30
394
原创 医学图像分割2025年最新论文分享(含开源代码)
目前,医学图像分割领域最核心的创新主要分为五大类:基础模型的演进、Transformer架构应用、多模态融合策略、边界精度优化、弱/半监督探索。这其中,SAM+医学图像分割属于基础模型演进和弱监督探索的交叉应用,并且是当前最火热的研究方向之一,属于论文产出的热点区域。本文梳理了医学图像分割领域近期的成果,挑选出了31篇高质量前沿论文,基本都是顶会顶刊,附开源代码,SAM+这块更是单独做了区分,方便想在这方向发文的同学研读。全部论文+开源代码需要的同学看文末。
2025-12-17 18:21:18
1137
原创 近期Mamba又杀回来了,你再不来就又错过了
Mamba自发布以来,就在不断进化、组合、压缩、外延,在被transformer各种魔改压下去一段时间后,近期的它似乎又杀回来了,高质量成果还真不少。原因想来也就四点:长序列建模的刚性需求、工业界与硬件厂商的入场、开源基础设施的成熟,以及跨模态任务的统一优势。当前mamba的创新也主要是围绕这四个核心爆发点展开。这里为方便各位快速定位自己的研究方向,我根据融合方法→应用场景→自身改进这个逻辑给其创新做了分类,同时帮大家整理了140篇Mamba前沿论文,可拿来做baseline参考。
2025-12-16 18:13:05
805
原创 狂中Nature子刊!CNN-LSTM做时间序列预测火力全开,思路非常上头!
在处理兼具局部相关性与长期依赖性的复杂时序数据时,CNN-LSTM是个非常可靠和有效的选择。因为它通过分工协作有效解决了关键矛盾,这方面比单一模型更全面、更稳健。但从创新角度来说,CNN-LSTM做时序预测研究范式已经发生了深刻变化,单纯堆叠的思路是很难再登上顶会顶刊了。现在的主流更偏向于深度集成与改造,或与Transformer等新架构进行复杂融合,这方面已有不少成果出现在Nature子刊上了。
2025-12-15 18:16:43
397
原创 入选TPAMI顶刊!多模态图像融合新突破!
最近在IEEE TPAMI上刷到了不少关于多模态图像融合的研究,比较亮眼的就有FreeFusion,一种红外与可见光图像融合方法,以及SFINet及改进版SFINet++(见下文)。这俩属于当前多模态图像融合最具潜力的两类创新方向:与大模型/基础模型结合、解决“未对齐”与“退化”真实难题。如果你打算冲顶会顶刊,完全可以沿着这两个方向深入,比如为新问题找到全新视角,或者用自驱学习机制取代旧有手工范式。另外还有一些非常值得学习的成果,如果你毫无思路,那我建议你先看看它们。
2025-12-12 18:15:00
465
原创 融合Transformer与卡尔曼滤波,发中科院二区及以上不是问题!
如今的Transformer+卡尔曼滤波正处于学术成果产出的黄金窗口期,是一个“问题够老、方法够新、应用够广”的方向,尤其适合对状态估计有高要求的领域。就学术角度而言,这方向痛点明确、baseline足够清晰,再加上热门的交叉属性,受众广泛。更重要的是,它不内卷,创新路径多样,比如想快速发文,就可以尝试设计轻量级专用注意力模块,或者在全新或热门领域搞点应用型创新。
2025-12-09 18:10:21
938
原创 迁移学习+时间序列预测又赢麻了!快速上手拿下顶会顶刊!
迁移学习+时间序列预测,一个能解决数据稀缺和模型泛化两个实际应用核心痛点的方向。几年前这方向的研究还很少,现在已经在顶会顶刊上持续有成果产出了,发展势头可见一斑。到了今年,迁移学习+时序预测的发文门槛虽然有所提高,但机会还是很多,尤其在解决时序数据的固有挑战方面。比如如果你就想快速冲毕业,可以做参数高效微调在时序预测中的应用,这是当前的交叉热点,实现简单,易于成文;如果想拼顶会顶刊,那推荐做领域不变因果特征学习,性价比和成功率更高。
2025-12-04 13:38:34
475
原创 SCI发文热点!多模态融合目标检测!找对思路发一区超简单的
多模态融合目标检测这块现在真的是热门到不行,因为它的核心前景在于解决复杂现实世界感知相关的难题,而这显然很契合当前学术界和产业界的共同需求。表现在发文方面,就是持续上升的论文占比。值得一提是现在的创新已经不能用简单的特征拼接了,需要在架构革新、表征学习、推理优化、特征增强四个不同维度上深挖。这里面最容易入门是特征增强,比如基于扩散的特征修正,TGRS 2025上那篇讲DKDNet模块就是这类。
2025-12-03 16:28:00
457
原创 时间序列可解释性发顶会,关注这个核心思路就够了
深度学习搞时序,可解释性始终是个绕不去的坎。发展至今,关于这个难题的研究重心已经从打开模型黑盒,转变成了强调解释必须服务于人类的决策,也就是“决策可解释”。那么在这种背景下,时序可解释性还能如何创新?我的建议是:不要只做更好的“解释工具”,而是要设计更好的“决策伙伴”。你的创新应该紧紧围绕“为人类决策者构建有意义的时序抽象层”这个核心挑战,而且评估工作价值时,也要设计面向决策的评估。
2025-12-02 16:38:56
880
原创 改进Attention能效飙升10倍!2025年注意力机制依然是王牌的存在!
近期,斯坦福等通过改进注意力机制,成功解决了Transformer在处理长文本、高分辨率图像/长视频时,成本飙升的问题,提出的CAMformer更是实现了10倍能效提升!很显然,该成果的核心创新点是对注意力机制的“架构级重构”,这是当前注意力机制的主流创新方向之一:模型架构与组合。值得一提的是,这路径门槛较高,如果想冲顶会顶刊,倒是可以一试。另外注意力机制还有几个不错的创新方向:特征处理与融合、特定任务适配、结构设计与尺度。新手的话更建议选前两个,因为一个简单直接,易出效果;一个场景驱动,需求明确。
2025-11-28 17:36:10
409
原创 顶会顶刊是怎么练成的?靠【PINN+多任务学习】组合拳搞定,学会了
作为当前AI for Science的两大热点,PINN与多任务学习的结合可谓是1+1>2。从技术上看,这组合直接解决了PINN的核心痛点,应用范围up;从学术角度看,这组合属于当下正热的交叉创新,尤其受顶会顶刊欢迎。也就是说,很多领域的大量问题都可以作为多任务来搞,灌水空间大(不是)。而且这组合的论文故事线很清晰,意味着好包装。如果你感兴趣了,想快出论文,那我推荐做硬参数共享或不确定性加权。如果想发高区,渐进式学习或物理机理驱动的多任务设计是好选择。
2025-11-27 17:20:16
361
原创 顶会诱捕器:傅里叶变换+时间序列!久违的思路干货,原来还可以这样做
傅里叶变换为理解复杂的时序数据提供了频域这一全新视角,这让以它为基础的方法能够有效应对时序的非平稳性、复杂周期性和长程依赖等核心挑战。因此,傅里叶变换+时间序列的应用相当广泛。从发文角度看,这方向已经从简单地使用傅里叶变换,发展到如何更精细、更智能地利用频域信息。根据这个趋势,动态与自适应的频率处理、多尺度与多分辨率分析等是不错的探索选择,成果可参考AAAI25的FSatten、Affirm。另外这方向还有不少有潜力的思路,比如面向特定任务的频谱优化等。
2025-11-26 17:10:10
442
原创 一区 Accept 稳拿!小波变换+注意力机制持续火爆,发文思路给你整理好了,你上你也行
推荐一个交叉方向:小波变换+注意力机制。近年来它潜力很大,不仅在理论上巧妙地融合了两种机制的优点,在实践中也展现出了卓越的性能。目前它核心的创新方向主要有三大类:架构创新、应用创新、理论深化。在最近的顶会顶刊均有成果产出,尤其架构创新这类。比如AAAI25的具有全新结构逻辑的多频率融合注意力模块MFFA,以及双一区的三位一体化融合架构Stockformer,用于股票选择。推荐想快速上手的同学尝试。当然,除了上述这些比较成熟的方向,还有一些前沿思路也可以考虑,比如探索不同小波基的影响、动态小波选择机制等。
2025-11-25 16:28:50
436
原创 频域+特征融合,超强组合轻松拿下双1区TOP,成为课题组最靓的崽!
继TPAMI 24的FreqFusion,频域+特征融合又出了个双一区TOP成果,轻量级双分支混合架构 FGNet!该方法为遥感影像的分割提供了新的范式,同时解决了混合架构融合低效的痛点。从原理上说,该方法得益于这个组合在信息利用方面的优势,通过融合形成优势互补的特征表征,从而让模型对数据的理解更全面、更鲁棒。同时这也让该组合能更契合多模态融合这一AI重要发展趋势,研究前景越发广泛。如今,基于现有的研究,频域+特征融合相关的创新主要在融合架构与机制、深化频域信息、跨任务/领域应用、与新兴模型结合等方面。
2025-11-24 17:00:31
378
原创 机器学习可解释性又爆新突破!直接拿下双一区TOP刊!
机器学习可解释性方法又上新了!这次是《Advanced Science》上的一项研究CellPhenoX,简单实用还有临床实用价值!强烈建议对此感兴趣的朋友下载研读。我也简单看了下idea,这个核心还是属于局部解释性这类技术手段,很符合当前这方向创新的热门思路:优先选面向应用的设计这个创新方向,搭配局部解释+机制性解释的方法。既契合顶刊偏好,创新点又容易提炼、验证难度还很适中,发表成功率高。当然,其他创新方向和方法是可以根据自身研究基础/资源灵活搭配的,这部分我还是建议多看前人成果。
2025-11-21 17:20:51
697
原创 CNN+Mamba+UNet,经典组合轻松发文,没有头绪的可以看这篇!
医学图像分割领域有个很有前景的研究方向:CNN+Mamba+UNet。这组合通过优势互补,在学术上实现了基础模型创新的突破,在工业上也完美兼顾高精度与高效率。这让它受到了顶会顶刊的持续关注,从发文角度来看,无疑是个好选择。另外,值得一提的是,部分顶刊对于混合架构的研究是有稳定需求的,因此,如果对这方向有想法,可以先从架构创新这个最核心的突破口尝试,比如设计新的分支交互机制。熟悉了也可以试试在技术策略上找思路。
2025-11-20 16:16:00
590
原创 顶会风向标!带你用爆火的多模态医学图像融合实现弯道超车!
多模态医学图像融合,CV和医学图像分析领域的经典热点。最近陆续出现了不少关于它的研究成果,其中较为瞩目的当属AAAI25的BSAFusion网络(详见下文解析)。从发文角度来看,这方向确是个相当不错的选题,目前也正处于一个技术爆发和临床需求旺盛的交汇点,潜力巨大。不仅门槛适中(数据来源相对丰富),就研究成果的展示这块,都比传统方法优越(可视化强)。如果感兴趣,那我建议不要死磕融合网络结构,尽量在问题定义、损失函数、评价体系和应用落地上做文章。比如面向特定临床任务的感知融合,这算是目前最容易出亮点的。
2025-11-19 18:15:37
498
原创 小样本学习+目标检测太好发文了!创新多门槛低,“故事”也好讲
给想要快速发出论文的同学推荐一个“性价比高”的方向——一是因为这方向现实需求迫切,容易讲好“故事”,毕竟在很多领域,收集和标注的成本懂的都懂。二是,FSOD数据需求小,研究门槛低,这意味着实验周期短,非常适合快速迭代想法。而且更重要的是,FSOD与前沿技术结合紧密,创新点多,在CVPR/TPAMI等顶会顶刊上关注度足够,只要工作有亮点,就有机会。那么如何快速发出成果,特别是高区?我的建议是“站在巨人的肩膀上,做巧妙的改进”,具体可以往数据与特征层面、模型结构层面这两类靠。
2025-11-19 12:15:49
359
原创 狂发顶会顶刊的多模态数据预测,赢在哪里?
就论文发表的角度来说,多模态数据预测是一个产出丰富且正处于风口的研究方向。这源于多模态相关的持续霸榜,再加上,因为该领域需要处理不同模态数据间的关联和转化,这让它无论在模型架构、融合方法、对齐技术还是应用落地层面,都存在大量待探索的空白,换句话说,就是创新空间大。值得一提的是,这方向最近有不少突破,且很多都发布在了CVPR等顶会、nature medicine等顶刊上。为方便感兴趣的同学快速了解研究进展,我从中挑选了9篇多模态数据预测前沿论文,大家可拿来作参考找思路。
2025-11-17 18:06:40
823
原创 又登1区!多模态深度学习发文大道果真宽又阔啊!
今天和大家聊聊多模态深度学习这个方向,它现在不仅学术价值高,在工业界的需求也非常明确,尤其是在医疗诊断这个关键领域。比如Nature Communications上近期就有一篇相关应用,实现了正常认知、轻度认知障碍、阿尔茨海默病与非阿尔茨海默病痴呆的精准分类。推荐对这方向感兴趣的朋友研读。目前,从论文发表情况来看,多模态深度学习仍然是比较好出成果的,不过简单的微调和应用拼接显然是不管用了,现在都往特定领域搞定制,或者高效率低门槛等方面努力。
2025-11-03 11:08:21
468
原创 “LSTM+时间序列异常检测”老树开新花!新玩法=发文密码,快来学呀!
目前,LSTM+时间序列异常检测这个方向,单纯用一个LSTM网络做异常检测,创新点已经非常有限了。如今我们更倾向于将LSTM作为强大的时序特征提取器,然后与其他前沿技术进行巧妙组合。比如最近刚提出的Graph-Augmented LSTM方法,引入“图结构建模”,完美解决了LSTM的固有局限,在图结构时序数据的稀疏异常检测任务中,实现了40%的性能提升!除此之外,现在这方向的创新也逐渐从“方法驱动”向“场景驱动”转变,近期不少成果证明了这个趋势。
2025-10-29 12:21:22
539
1
原创 小波变换+Mamba联合上大分,顶会顶刊库库发!看懂这篇文章你上你也行
小波变换+Mamba这个组合最近又有了不少新成果,比如哈工程的WaMaIR,在图像恢复任务中让雾霾雨雪瞬间消失、既轻量又速度,性能牛x的HSRMamba模型,以及顶刊IEEE TGRS的WMSR框架。而这个方向之所以越来越火热,根本原因在于它精准地解决了现有模型的一些核心痛点,性能提升显著。也正因如此,这方向已经得到了学术界的初步认可,且创新空间还远未饱和,是个非常适合发表论文的方向。目前,频率域分析、模型结构设计、应用场景拓展等都是很不错的探索角度,值得尝试。
2025-10-27 18:09:47
480
原创 ResNet+LSTM这么做,2区以上希望大
前几天关注了LSTM之父和ResNet奠基人的创始之争,瓜吃了个爽。不过呢,开炮归开炮,ResNet与LSTM的结合到现在也依然是我们搞创新的好选择。因为这种混合架构在技术上具有天然优势,能直接解决众多领域的实际问题,应用面很广。而且从现有研究来看,基于ResNet+LSTM及其变体的研究成果在中科院1/2区常能见到,也证明了其学术价值。我从这些高质量成果中挑选了部分当做参考,整体看下来,创新还是基本围绕模型结构优化、面向具体场景优化、开拓新兴与交叉领域等角度展开。
2025-10-22 10:11:56
920
原创 SAM+医学图像分割为何又刷爆顶会顶刊?
SAM,学术届的金字招牌,如今已成了医学图像分割领域的“基座”。目前任何一项新的医学图像分割研究,尤其是涉及交互式分割或少样本学习的,都必须与SAM或其主要变体进行对比。这让SAM+医学图像分割这个方向近年来变得格外火热,顶会顶刊成果颇多,比如CVPR、IEEE TMI等。从这些研究来看,这方向在适配微调或基准测试这类研究上的创新性已经很有限了,如果想发高区,或许可以尝试与“训练无关”的创新、深挖域适应/域泛化、融合MLLM,以及专注于高效3D分割。
2025-10-21 11:27:27
1033
原创 “时间序列+聚类”火力全开!双热点在手,发文我不愁!
最近翻到了一篇时间序列聚类综述,比较亮眼的成果是提出了一个综合的、统一的分类体系,科研价值挺高,值得一提的是图做的也挺好看。这个方向从研究前景来看其实是相当不错的,工业、医疗、金融领域必备。而且从发文角度来看,相对更容易产出成果,尤其是应用型论文。目前这方向现有的一些方法还存在尚未完美解决的问题,针对这些痛点进行改进,就是很好的创新点,比如可解释性方面。如果实在想不出idea,轻量化也是一种策略。本文整理了12篇时间序列+聚类前沿论文,附代码,方便大家亲手复现,站在巨人肩上才能看见更多机会。
2025-10-17 10:27:45
1006
原创 【Nature高分思路速递】 物理驱动的机器学习
作为常在《Nature》出没的方向,物理信息机器学习PIML今年依然势头不减,只综述就发表了许多,比如布朗大学GE Karniadakis院士的那篇。从这些成果来看,PIML如今已从概念验证逐渐走向广泛应用,新的应用场景正不断涌现。这也意味着有大量可探索的空间,更容易做出开创性的工作。为助力各位快速找到突破口,我建议:如果想快速发文,试试将现有的PIML方法应用到一个新的、还没人用PIML解决过的具体工程问题;如果想发高区,那就在效率、稳健性、泛化能力以及在真实复杂场景下的表现上下功夫。
2025-10-15 10:24:59
871
原创 Transformer+Mamba黄金组合太能打了,英伟达/Meta/腾讯抢着入场
自Mamba发布以来,Transformer+Mamba这一混合架构一直深受喜爱,它不仅解决了效率与性能的平衡问题,也为图像分类等视觉任务提供了新的解题思路。尤其今年,英伟达和腾讯等巨头已高调入场,比如Nemotron-H系列混合模型、混元T1模型等,Meta的新研究更是提出了这对组合的最优设计,实现了长上下文效率翻倍!这些成果多数被各大顶会顶刊收录,比如CVPR、AAAI,强烈建议想从这方向入手的论文er研读。
2025-10-13 18:13:31
689
原创 为何「频域+PINN」成为顶刊“黄金赛道”?
频域+PINN这组合最近在顶刊上的认可度挺高,已有相关论文发表在中科院1区TOP上,比如Applied Energy的FD-PINN方法。这意味着它也是个相当有潜力的发文方向,创新空间也比较大。它巧妙地解决了传统PINN在求解波动、振荡类物理问题时的某些固有难点,这为我们搞新研究提供了思路。不过就目前的成果来看,这方向虽然机会多,但门槛也在提高,如果感兴趣,建议抓紧上车。与最新架构结合、工业级应用这些切入点会更有突破性,推荐大家尝试。因为这方向发展很快,大家最好充分了解前沿再找创新点。
2025-10-10 14:34:19
825
原创 提分神器“数据增强”上大分!热门思路超好上手,你做你也行!
IEEE TII上有一篇基于扩散模型的数据增强方法有点意思,在故障诊断领域相当新颖有效。它属于数据增强当前最火热的创新思路之一:基于大模型的语义增强。除此以外,数据增强目前还有不少性价比很高的思路,比如增强数据的质量控制与偏差修正、面向特定模态与任务的定制化增强、XAI驱动的精准增强等,都值得论文er一探。为帮助想发论文的同学快速了解技术进展,我整理了15篇数据增强前沿论文,包含CVPR/AAAI等顶会顶刊成果,非常有参考性,相关的开源代码也整理了,方便大家复现。全部论文+开源代码需要的同学看文末。
2025-10-09 09:47:34
974
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅