自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学姐带你玩AI的博客

专注AI专业干货,AI前沿资讯,职业发展指导。

  • 博客(777)
  • 收藏
  • 关注

原创 时间序列预测方向卷SOTA不如卷这个!

时间序列预测还能做什么创新?不知道大家还记不记得ICLR2023的patchTST,这模型距提出也不过2年,最近一看引用已经1500+了,感觉也是很有潜力的研究主题。值得一提的是,去年SOTA都是按照patchTST做的基线,而且现在它的核心机制还没饱和,优化点也很明确,比如计算效率、应用场景这些,围绕它做研究还是有很大的创新空间的。如果大家有兴趣,我今天就来推荐patchTST相关4个值得投入的创新方向。每个方向都附上了最新论文,帮助大家理解,论文共有12篇,有代码,大家也可用作baseline参考。

2025-08-12 18:01:44 306

原创 2025年多目标优化最新创新点有哪些?

最近研究了一波的最新进展,发现了几个超有潜力的创新方向!于是整理了一下来和大家分享。每个方向我都配上了相应的前沿论文,方便大家理解并用作baseline参考。,已分类,有代码,只要是想靠多目标优化发论文的,相信都能用的到!全部论文+开源代码需要的同学看文末。

2025-08-11 18:34:04 501

原创 2025时间序列相关顶会论文盘点(附原文源码)

本文梳理 2025 各大顶会有关时间序列 & 时空领域的最新研究成果,一共 246 篇,附开源代码,包含 IJCAI、ICLR、AAAI、ICML、WWW、ICDE、KDD、SIGMOD,供大家参考。全部论文+开源代码需要的同学看文末时序预测:90篇时序分类:18篇时序建模:7篇时序大模型:4篇异常检测:18篇表示学习:6篇可解释性:3篇时间patch:16篇基础模型:4篇时序数据处理:7篇时间序列生成:7篇不规则时序:6篇应用-金融:2篇应用-医疗:2篇时空领域:6篇。

2025-08-08 18:09:46 752

原创 论文破局利器:目标检测DETR!高创新性+低竞争度

现在目标检测这领域,Yolo系列改进空间已经被压榨的所剩无几了,要想发论文,不如选DETR。尤其RT-DETR,更有新意,卷的人少很多。DETR的优势在于精度高,但速度上略逊色,还比较烧卡...因此未来的创新重点在“好用不贵”,即训练速度、边缘部署、任务泛化上。更具体点就是Query设计的高效化、工业界刚需的轻量化特征融合、跨模态自监督预训练等,没思路的论文er可以尝试切入。

2025-08-08 13:48:00 436

原创 结合创新!ResNet+Transformer“黄金上分搭档”!审稿人直呼内行

时至今日,许多大领域都离不开ResNet和Transformer这两种结构,其中ResNet更是成为了21世纪被引量最多的论文!这种背景下,ResNet抓细节+Transformer建模全局的黄金搭档,依然是科研“金矿”,在医疗/工业质检等垂直领域还是刚需,远没到退场的时候。而且近期随着硬件优化和多模态融合,这组合更香了,顶会上每届都有一批变体,很明显还能继续卷!不过现在光靠“结构微调+刷点”是行不通了,需要结合垂直领域痛点,往计算代价控制、复杂数据等深入才有机会。

2025-08-07 11:16:55 615

原创 (CVPR 2025)动态卷积超进化!清华新作炸场,即插即用,性能横扫SOTA!

动态卷积让CNN老树开新花!它自适应能力,以及计算硬件友好的优势起码还能在工业界再战五年!而且这方向理论门槛不高、易出增量成果,可以说是论文er的避险赛道。尤其今年,这方向在顶会顶刊上依然很吃香,光CVPR 2025就有OverLoCK、FDConv、清华LSNet(性能爆炸)等多篇成果,很明显还没卷到饱和。而且现在工业落地比“刷点”更重要,只要方法能带来显着效率提升,短文也能中顶会(比如ICCV的Industry Track)。

2025-08-06 10:32:31 429

原创 多模态融合近期比较好发论文的方向!

多模态融合,AI领域的“当红炸子鸡,前景可以用 “星辰大海” 来形容。这领域好发论文,但想发顶会顶刊,就得学会避坑,暴力融合不可取!今天就帮大家梳理一下多模态融合近期容易出成果的几个方向,另附20篇参考论文+开源代码方便各位学习,都是最新,包含顶会顶刊成果。全部论文+开源代码需要的同学看文末。

2025-08-05 10:01:09 698

原创 结合深度学习+组合优化,小小Nat Commun,拿捏~

近年来,深度学习凭借数据驱动、并行计算和动态建模的优势,在组合优化领域取得了显著的进展。而且随着算法的优化、硬件的升级,它也正逐渐成为复杂组合优化问题的主流解决方案。不过很显然,泛化性能、计算成本等依然是这方向难以突破的挑战,但从学术角度来讲,这些对论文er来说可都是创新突破口。比如今年我就已经在AAAI、Nat. Commun.看见相关成果了,中稿率可观。就目前来看,这方向的发展前景不仅依赖于技术创新(比如预训练框架、可解释性技术),更与物流、金融、制造等行业的数字化转型需求深度绑定。

2025-08-01 17:00:51 700

原创 多模态数据融合火了,想要高分可以这么做!抓紧上车卷一篇!

工业界喊了十年“多模态”,现实却是模态缺失、异构、低质量成了常态。在这种需求爆炸,但数据稀碎的情况下,现在对多模态数据融合的研究可不是一般的火。结合最新顶会动态和工业痛点来看,如今这方向基本还是围绕编码器-解码器、注意力机制、GNN、生成神经网络等主流方法进行优化,建议大家先找些新论文了解技术进展再入手。为节省大家找参考的时间,我整理好了26篇多模态数据融合前沿论文,包含上述主流方法,代码也有。现在这方向还是有点卷的,技术迭代必然很快,大家感兴趣就抓紧上车。全部论文+开源代码需要的同学看文末。

2025-08-01 10:22:41 393

原创 锁定中科院1区TOP!融合LSTM与Attention做时间序列预测 !

Transformer虽火,但在数据少、要求稳的时序预测场景中,LSTM仍是首选。尤其加上注意力机制后,更是弥补了LSTM的短板,增强了性能,实现了更精确的预测。这种组合不仅应用场景广泛,工业界爱,学术界也很是认可。对于论文er来说,它比纯Transformer好复现,又比单LSTM容易发论文。而且最近陆续上榜了好几篇中科院一区TOP成果,看出来很适合想发中高区的同学入场了。不过只堆模块肯定不行,建议多绑实际场景,从注意力结构改造、损失函数设计、非平稳性分解切入。

2025-07-30 17:07:20 426

原创 时间序列关于可解释性值得关注的论文汇总(含代码)

CV和NLP领域已经卷上天了,想必各位论文er“深受其害”,今天就给大家推荐一个竞争相对较小、潜力巨大的前沿领域——众所周知,时序模型是金融、医疗、交通等高风险、高敏感度领域的基石,而这些应用场景对模型的可解释要求非常高。因此,时间序列的可解释性研究也是我们至关重要的课题。从我最近梳理的来看(含顶会顶刊),如今的研究重心正从追求纯粹的预测准确性,转向寻求可信赖、可理解、可干预的AI系统。也推荐各位论文er参考这些论文,站在前人的肩膀上做出创新。全部论文+开源代码需要的同学看文末。

2025-07-29 16:33:56 651

原创 Mamba+特征匹配,突破效率与性能的平衡极限,涨点起飞!

在特征匹配领域,传统方法已经刷不动指标了,不妨考虑Mamba。现在Mamba+特征匹配是块香饽饽,既能蹭上SSM的热度,又具备解决实际问题的潜力,MIT(新作MambaGlue)都在做。它效率与精度的双重优势、强大的泛化能力,以及在轻量化需求下的极高适配性,让这方向在近半年的顶会顶刊中相当受欢迎,光CVPR25就看见不少(效率性能双UP的Jamma)。不过看样子它的“红利期”也持续不久,想发论文的同学抓紧。如果想快速出成果,可考虑找个垂直场景(医疗/遥感优先),构建轻量级混合架构;

2025-07-28 16:07:27 918

原创 SAM升级!医学图像分割新突破!

医学图像分割领域迎来新突破!SAM模型凭借出色的泛化能力,正成为解决医学图像标注难题的利器。近期CVPR2025、IEEETMI等顶会顶刊密集发表相关成果,显示该方向研究热度高涨。本文精选15篇最新前沿论文(均含开源代码),涵盖半监督学习、自适应提示、3D适配等创新方向。代表性工作包括:通过无监督提示和偏好优化的半监督分割框架;引入时间适配器和置信记忆的SAMed-2;自动生成3D提示的Self-Prompt-SAM等。这些研究通过"微创新"解决医疗场景特定问题,为研究者提供丰富技术参考

2025-07-25 17:30:56 333

原创 目前MLLM的研究有哪些比较好的切入点?

MLLM确实是当下的研究热点,从Meta最近在多模态模型上下的功夫就能看出来。如果有想法切入,现在入场也不算晚,长尾问题还有模态扩展问题一堆。这方向门槛比较低的切入点可以考虑小目标推理增强、多模态指令调优优化、工业异常检测,方便快速出成果。想冲CVPR/AAAI/NeurIPS,就试试效率提升、认知机制、啃视频/具身、伦理合规等。比起单模态LLM,MLLM现在还处在“蓝海混战”阶段,想发论文的抓紧把握窗口期。我这回准备了70篇MLLM前沿论文,包含近三年代表性模型,开源代码已附,需要参考的自取。

2025-07-21 17:18:25 918

原创 登上Science子刊封面的硬核idea:端到端强化学习!

是什么让华科微软地平线争先发文?原来是端到端强化学习!先是性能提升3倍的RAD,再是首个基于GRPO的自动驾驶大模型AlphaDrive,以及纯视觉SOTA模型ReCogDrive,甚至还有的登上了Science子刊封面...只粗略一看,就能体会到端到端RL如今的热门程度,尤其在具身智能和大模型决策这俩赛道,真真是火力全开!其实端到端RL现在就像10年前的深度学习—— 框架未定,山头林立,可发挥空间大,对于论文er来说,是绝好的发文选择。

2025-07-16 17:17:42 531

原创 把“傅里叶变换、注意力机制”组合在一起,这篇文章你一定要看

傅里叶变换+注意力机制,科研界的“当红炸子鸡”!它解决了AI模型的两个致命痛点——长程依赖建模效率低,和复杂信号特征捕捉不充分,应用价值显而易见!自清华FoPE等陆续发布于ICML25之后,这种组合热度飙升,又因其“故事”易讲,创新点包装灵活,成为了顶会顶刊持续青睐的“真香”方向!但值得注意的是,死磕通用架构早已不是这方向发文首选,深入某个垂直领域,针对性解决问题,再讲好故事,想必审稿人会更有兴趣。比如考虑“领域定制滤波”,可快速出成果;

2025-07-14 17:05:56 337

原创 超强组合!CNN+RNN!!

今天聊聊CNN+RNN。这组合确实不算新潮了,但在特定赛道,比如结合新问题或新架构时,还是很有“闷声发论文”的潜力的。还记得新架构TTT吗?在当前纯CNN+RNN结构堆砌难发好文的情况下,这就是一种突破。还有“老结构新问题(农业/生物)”、“新解释(神经机制)”等方向,都是CNN+RNN老树还能开新花的好选择。因此如果有论文er感兴趣,不妨一试。想快速出成果,就做做应用创新;想冲顶会顶刊,可以考虑TTT架构+神经科学解释。本文整理了10篇CNN+RNN前沿论文,帮助各位了解最新进展,找准思路。

2025-07-11 16:29:16 734

原创 顶刊发表:时空预测新突破!精度超10+倍,速度超100+倍

近期,北大团队提出了一个时空预测新架构U-RNN,已发表在Journal of Hydrology(一区TOP)。实验证明,其精度超过现有AI模型10+倍(MAE),速度超过机理模型100+倍!可见到了2025年,时空预测相关的研究有了相当大的突破,如今不仅技术瓶颈松动,应用场景也在疯狂扩张,顶会顶刊成果数目也直线上升。但很显然,对于论文er来说,纯算法创新在这方向已经很难过稿了,未来在能源、交通等垂直领域深挖场景+新技术(比如LLM)适配方面更易突围。

2025-07-10 18:20:05 495

原创 2025必火的发文方向:特征融合+目标检测

分享一个理论有深度(多模态对齐/分布偏移)、场景有痛点(自动驾驶/医疗)、技术有突破空间(动态融合/神经符号结合)的研究方向:特征融合+目标检测。根据近期成果,目前这方向正处在技术突破和应用爆发的双重风口,灌水容易,但想做出深度比较难。建议新手尝试从跨模态鲁棒性切入,加个动态权重分配模块,冲二区问题不大。如果要求比较高,想狙TPAMI这类顶刊,可以试试把脉冲神经网络扩展到多模态融合。

2025-07-08 17:34:31 995

原创 只打高端局的多模态融合,用可解释性再次霸榜CVPR!

有人问可解释的多模态融合到底是不是坑?答曰:卷,但机会犹存。根据CVPR 2025投稿数据,多模态+可解释是三大热门之一,而工业界也同样渴求可解释性...因此这方向可以说需求爆炸,痛点深重,还是很值得卷一卷的。不过对于论文er来说,目前纯刷榜的“可解释后处理”已经越来越难中了,必须把可解释性设计进模型底层。也就是说,发文思路推荐:架构创新 > 垂直应用 > 后处理工具。创新点可着力关系推理、具身解释、边缘部署等。其实说白了,就是找个工业界痛点(如医疗误诊、机器人事故),用可解释性解决它。

2025-07-07 17:15:36 861

原创 2025年Graph+AI Agents最新创新思路

AI Agent,一个当下科技领域特别火爆的概念。发展至今,它规划、记忆、协调等核心功能在处理复杂关系方面遭遇了瓶颈...那么该如何解决?来人,上Graph!Graph以其高效关联分析能力,结合Agent的自主决策优势,完美实现复杂关系的高效推理与动态决策!鉴于如此优势,Graph+AI Agents自然成为了一个高潜力、强创新的研究方向,不仅拥有广泛的应用场景,相对应的学术研究也十分火热。但在多模态扩展、高效协作、深度推理三方面,这方向仍然存在空白,强推各位论文er关注!

2025-07-04 17:28:02 663

原创 多模态医学图像创新突破,成果登上Nature正刊!

医学人工智能领域有个很火的方向:多模态医学图像。最近,哈佛等团队在Nature正刊上发表了相关文章,讲述了多模态生成式AI在医学图像解读中的应用,非常值得该方向的同学研读。实际上,多模态医学图像的论文在顶会/顶刊接受率向来高,尤其近半年,多项工作入选CVPR、AAAI、中科院TOP刊等。这方向虽然竞争日益激烈,但在罕见病诊疗、基层医疗、多组学融合等场景仍然存在大量创新空间,如果想发论文,还是很推荐关注的。

2025-07-03 17:08:14 791

原创 Nature+CVPR双杀!Transformer热度狂飙,何恺明、李飞飞都参与了

要问哪个是当下最流行的模型结构,那必然是Transformer。尤其近几年,因为LLM大行其道,我们对Transformer的探索热情成倍上升。具体体现在各方大佬发布的诸多成果上,比如李飞飞团队的FlowMo、字节seed出品的SAIL、何恺明CVPR2025新作、微软Spectformer...CVPR/ICLR/nature methods等顶会顶刊上相关研究也数目繁多,可谓盛况空前。细看之下,Transformer目前主要有两大创新路径:改进和应用。

2025-06-30 17:40:01 755

原创 PINN又爆创新!算法小改,百倍加速!

学术界大明星PINN又新爆了不少好东西,近期的就有权威期刊JCP2025上的VS-PINN,算法小改一下,就比原生PINN加速近百倍!另外还有个经典作Stiff-pinn,单单今年就被引100次!需知PINN能大大降低实验难度,是“水”论文的一把好手,这波爆发想必又有发挥(搞创新)空间了~细看这俩的创新算是PINN的优化与训练策略类,除此以外,PINN还有自适应、采样与离散化、与其他技术结合等主要创新路径,尤其自适应,物理方程不够,神经网络来凑;

2025-06-27 18:25:06 501

原创 左手Nature,右手CVPR!持续学习(Continual Learning)才是2025发文捷径!

深度学习中,“灾难性遗忘”是个不可避免的问题,而持续学习的出现打破了这一困境,它能让模型在多个任务间顺序学习而不遗忘旧知识,同时具备适应新任务的能力。鉴于如此优势,持续学习的研究一直是AI领域的核心议题,目前也正处于爆发期。结合2025年最新动态(CVPR25的SEMA、nature子刊的CH-HNN),创新主要聚焦突破单一任务的局限,具体点说就是结合联邦学习、元学习等交叉技术,向多模态、动态环境、资源高效、可解释性等方向演进。

2025-06-25 17:17:49 508

原创 这思路逆天了!注意力机制+CLIP霸榜顶会,直接带飞发文之路!

这种结合可以通过动态对齐、上下文感知和并行计算,显著提升多模态任务的性能。在多模态爆火的当下,算是热点赛道。得益于其创新,这方向现处创新爆发期,可参考成果丰富。比如CVPR 2025的DiTCtrl、AAAI 2025的Clip-cid、STDD、IJCV的WeakCLIP...高产盛况可见一斑。如果感兴趣的同学想上车,可以先看我整理的了解前沿,代码基本有。创新的话建议大家侧重“小改动大提升”,优先选择差分注意力扩展、医疗/工业细粒度适配、生成式协同框架等方向切入,快速产出成果。

2025-06-23 17:51:36 451

原创 (CVPR 2025)可变形Mamba再度进化!SOTA性能炸裂,涨点起飞

今年看mamba又中了一堆顶会,尤其CVPR 2025,这发文潜力有目共睹。其中比较值得关注的有个可变形Mamba,大连理工发布的DefMamba,全球首个可变形扫描视觉Mamba框架,实现四大任务性能全面SOTA。可变形Mamba作为SSM的动态扩展,拥有“动态效率平衡”核心优势,它的理论延展性和应用多样性(医疗、生物)为研究提供了多个发力点,创新空间可观。今年推荐各位论文er优先以医疗影像分割与视频时序建模作为突破场景,再结合混合架构、3D扩展搞创新,发高区机会大。

2025-06-18 16:56:15 547 1

原创 2025年深度学习+多目标优化最新创新思路

围观了港科大等团队的最新综述,发现深度学习+多目标优化近年来也是话题多多,尤其在图像生成、自动驾驶、大模型训练等场景中呈现爆发式增长。简单说来,这种技术不仅能解决传统单目标优化的局限性,还能让模型在复杂场景中实现多任务协同提升,成为当前顶会抢发热点也不奇怪。更别说这方向正处于技术红利期,无论是算法创新还是场景开拓都很有空间。比如应用型研究(医疗/通信/环保)+大模型对齐就比较容易出成果,创新切入点推荐小而精(改经典算法)、跨学科(+脑机接口)等。

2025-06-11 18:21:32 957

原创 Nature发表!多尺度强化学习重大成果!

最近《Nature》上有一篇多尺度强化学习的新工作,讲的是大脑中的多时间尺度强化学习,具体细节可看下文解析。这方向是目前复杂系统智能化的核心技术,凭借分层决策与动态适应性在工业界有广泛的应用前景。相信有些论文er已经发现了,这些优势也契合了当下的趋势(AI正不断向复杂场景渗透),可以预见,多尺度RL即将迎来爆发式增长机遇。近期的一些高区成果也表明,这方向已跻身顶会顶刊录用率攀升的热门赛道。为帮助各位快速上车,我整理了9篇多尺度强化学习新成果,有代码的已经附上了。

2025-06-10 18:01:01 443

原创 Mamba+物理信息原理!清华都在做的论文大杀器!

不久前清华祭出了一种长序列建模大杀器——PhyxMamba框架,创新性地将Mamba与物理信息原理相结合,为混沌系统的长期预测提供了新思路!这种创新非常值得论文er关注,一是因为Mamba+物理信息原理属于俩大热门结合,高效性配上可解释性,在众多工业场景中都很有话题度,发展前景可观;二是,这方向交叉性很强,现有研究较少,更容易找到创新切入点。如果感兴趣,建议优先选择与现有Mamba工作结合紧密的领域(如图像处理)进行突破,再逐步扩展到生物医学等复杂场景。

2025-06-09 17:45:42 388

原创 贝叶斯深度学习!华科大《Nat. Commun.》发表BNN重大突破!

华科大提出基于贝叶斯深度学习的超分辨率成像,成功被Nat. Commun.收录。可以说,这是近期最值得关注的成果之一了。另外还有AAAI 2025上的Bella新框架,计算成本降低了99.7%,也非常值得研读。显然鉴于BNN“不确定性建模”与“概率推理”的优势,这类BNN研究随着数据可靠性需求的激增,已经逐渐成为AI领域炙手可热的研究方向,顶会顶刊占坑无数,尤其在医疗诊断、自动驾驶等高风险场景中尤为受欢迎。不过值得注意的是,当前BNN的研究呈现三大创新趋势:跨学科融合、多模态优化、小样本突破。

2025-06-06 18:22:22 1189

原创 入选中科院一区TOP!基于YOLO和卡尔曼滤波的目标检测新SOTA!

分享个目标检测和跟踪领域的黄金组合:YOLO+卡尔曼滤波!近年来自动驾驶、工业自动化等场景需求激增,这类拥有实时性、多目标处理能力和鲁棒性等优势的组合也因此广受青睐,迅速跻身顶会顶刊热门研究方向,高质量成果不少。比如四川大学新提出一种无人机分层搜索方法,在六种不同环境中都性能优越,成功登上中科院1区TOP!还有顶会的Kalman-YOLO方法...大多成果的创新基本围绕动态模型优化、多模态融合、轻量化设计等多维角度,如果有同学想搞,也推荐考虑这些思路。

2025-06-05 19:13:35 389

原创 频域+时间序列,一行代码稳定提升预测精度!

以往传统时域建模一直占据主导,但如今频域研究异军突起,与时间序列结合,能挖掘出更丰富信息,显著提升模型性能与预测精度。因此,频域+时间序列逐渐成为学术焦点,在金融风控、医疗信号分析、工业预测等领域都实现了突破性应用!比如最近ICLR 2025上的FreDF,只需加入一行代码,就能在主流模型上实现预测精度的稳定提升!还有一区TOP上的TFDNet,在多个基准数据集上均超越SOTA!显然这方向已经成为了顶会顶刊常客。

2025-06-04 19:11:52 377

原创 中稿⁺¹ !多模态学习+注意力机制再登顶会!新成果GPU内存消耗减半

深度学习找不到创新点?。作为多模态学习和注意力机制这俩大热点的结合,交叉注意力融合凭借动态对齐与高效建模的优势,在众多多模态任务(比如图像-文本匹配)中脱颖而出,发展前景相当可观,成功成为。这方向尤其在高效计算、弱监督任务中容易产出创新点,而且根据近年顶会顶刊的收录情况,轻量化、自适应融合、弱监督学习等方向非常值得关注。比如CrossMamba方法,在目标声音提取任务中,参数量减少的同时,既保持了高效计算,又显著提升了性能。

2025-06-03 17:00:54 731

原创 提速400倍!物理信息卷积神经网络登上中科院一区TOP!

今天来聊聊物理信息卷积神经网络PICNN。大家还熟悉PINN吧,当红辣子鸡。PICNN作为PINN的一种变体,引入了卷积层来增强对空间数据的处理能力,在涉及空间特征的场景下会比PINN更高效。因此最近的PICNN在特定垂直领域(比如工程仿真)热度明显上升,各大顶会顶刊都出现了不少相关研究。比如中科院一区TOP上一种基于PICNN的方法、提速400倍的微电网经济调度新方法。为方便各位快速了解这些成果,我从中挑选了9篇最新的值得研读文章分享,可用作参考。

2025-05-30 18:27:27 732

原创 找到了目标检测最好的发论文的idea!简单易上手!

有人说目标检测不好做了?可不见得,作为计算机视觉的核心任务之一,它在2025年仍将是研究热点,也依然会是我们“水”论文的好选择(doge)。不过这方向如今确实卷,而且研究重心正从“精度竞争”转向“实际应用落地”和“解决长尾问题”。比如典型代表YOLO,创新主要围绕引入注意力机制、模型轻量化、与其他新技术结合、损失函数优化、数据增强等等,更注重模型的“实用性”。至于更广泛的目标检测,目前的主流创新思路还是transformer-based、基于多层感知机、扩散模型,还有近期热门的大模型时代的目标检测等。

2025-05-29 19:39:26 1048

原创 多模态融合可能是现在或者未来一段时间最好发论文的方向了!

多模态融合,一个2025年仍然处于爆发期的热门方向,还在持续吸引学术界与工业界的投入。作为顶会顶刊常客,它也依然是当前最好发论文的方向之一。目前,这方向主流的创新思路主要有两大类:改进类创新和结合类创新。改进类创新如可解释多模态融合,核心目标在于实现性能提升。而结合类指的是多模态与其他技术协同,这方面根据结合的具体技术、目标和实现方式,可进一步区分为3个层次(任务、方法、模型)。

2025-05-28 18:18:37 929

原创 无监督强化学习新突破!无需标注,性能飙升159%!

最近,强化学习的一项突破帮助我们向AGI又迈进了一大步!那就是清华&上海AI Lab的Test-Time RL(测试时强化学习),无需标注,模型自学,性能飙升159%!Test-Time RL是一种无监督强化学习方法,相较于传统强化学习,这类方法可以解决依赖人工奖励、数据效率低、探索能力弱等问题,有很强的自主性、高效性和适应性,特别适合在奖励稀疏、环境未知或任务复杂的情况下应用,发展前景广阔。

2025-05-27 17:22:28 434

原创 接Accept!“机器学习+SHAP”发文大有可为,轻松拿下一区SCI!

在需要高可解释性且数据复杂的场景,比如医疗、法律、工业等,机器学习+SHAP是个潜力巨大的研究方向,目前也已经成为了学术热点。这是因为这种结合拥有提供模型可解释性、公平性检测、模型调试和优化、业务场景适配等能力,在增强机器学习模型的透明度和可信度方面遥遥领先,解决了我们对可解释性的迫切需求。这种研究热情也体现在近期的成果上,多个中科院TOP期刊都发表了相关论文,推荐感兴趣的同学关注。这边为了帮各位节省查询的时间,我已经整理好了11篇机器学习+SHAP新论文,需要的自取~

2025-05-26 18:20:03 332

原创 用CNN做时间序列预测,拿下多篇中科院一区TOP!

在处理复杂、高维和非线性的时间序列数据上,会比传统方法更适合,可以给我们提供更强的建模能力、更高的计算效率和更好的扩展性。这些优势同时也带来了巨大的发展空间,目前该方向已经成功应用于金融、能源、医疗、环境监测等多个领域,多项突破性成果登上中科院一区TOP,已然成为当前的热门研究方向。为了方便感兴趣的同学找参考,加快论文进度,我从近期中挑选了,都是值得深入研读的paper,需要的同学可无偿获取。全部论文+开源代码需要的同学看文末。

2025-05-23 17:50:21 679

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除