自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

学姐带你玩AI的博客

专注AI专业干货,AI前沿资讯,职业发展指导。

  • 博客(726)
  • 收藏
  • 关注

原创 SAM进化版开源!100倍推理加速!这思路简直杀疯了...

尽管SAM在处理大规模序列比对数据上难以替代,但它在速度、准确性、灵活性及功能扩展方面仍然有所欠缺。为了解决这些问题,研究者们,比如近期清华&英伟达推出的SAMEO框架,以及实现100倍的加速推理的TinySAM。另外还有很多成果已被顶会顶刊收录,简单看了点就有ICLR 2025上的MTSAM、SAMRefiner两篇,Nature Methods(中科院1区)的μSAM工具...可见现在有关SAM的研究有多热门。为了方便论文er快速了解前沿,这次我从中挑选了。

2025-04-23 17:44:35 378

原创 Mamba还能这么玩?新SOTA横扫14个图像修复任务,计算量降低150倍!

核心优势在于Mamba的长序列建模能力,可以替代Transformer,在高分辨率或复杂场景的实时修复等任务中优势显著。这意味着,Mamba+图像修复会在热门的医学图像、自动驾驶等领域发展迅猛,落地前景可观。再加上,近年主流顶会(比如CVPR)对SSM类模型接受度较高,比如横扫14个图像修复任务的MaIR、降低150倍计算复杂度的Serpent...非常适合有论文需求的同学研究。本文整理了,大多都开源了,想快速出成果的同学可以直接拿来做参考,同时也建议从等角度做创新,比较容易上手。

2025-04-22 17:55:46 723

原创 高分利器:Transformer+图像处理!创新性绝了,3位 IEEE Fellow推荐的含金量!

Transformer还能怎么做创新?西工大&台湾清华等3位 IEEE Fellow给出了思路:一种异构窗口 Transformer的图像处理方法,在去噪时间上仅占流行Restormer的30%。其实,近两年一直很活跃,因为Transformer核心的自注意力机制比CNN更能灵活处理目标检测、分割等CV任务,尤其是高效结构设计、跨模态应用和领域适配等。因此这个方向的研究多,顶会顶刊成果也不少,比如IEEE TIP的SENet、CVPR 2025的PFT模型...都值得研读。

2025-04-21 18:42:38 240

原创 顶刊神思路!融合Transformer与CNN做医学图像!!

众所周知的热门组合。搜前沿的时候发现它在领域高质量成果不少。比如登上1区TOP刊的混合DL架构TBConvL-Net、CFFormer混合模型、医学图像分析模型Sdr-former...原因在于这类混合架构可以更准确地识别和定位病变区域,提高诊断准确性,同时减少对标注数据的依赖,非常契合当下医学界的需求(比如计算资源有限的问题),研究前景广阔。如果需要发论文,这方向是目前比较好的选择,搞创新的话可考虑等角度,建议论文er从临床痛点反推模型设计,不要单纯堆叠模块。本文整理了。

2025-04-18 17:50:31 365

原创 LeCun谢赛宁新作爆火!多模态自监督学习成一区TOP/CCF-A香饽饽!

是真挺热的,简单看了几篇研究,不是一区TOP就是CCF-A。比如AAAI 2025的Mentor系统、顶刊IEEE IOTJ的SketchTriplet方法(下文都会细说)...另外还有LeCun谢赛宁的新作,验证了SSL在多模态任务中超越CLIP的潜力。非常建议对多模态自监督学习感兴趣,且有论文需求的同学研读。我这边也打包好了,无偿分享!掌握这些idea顶会顶刊中稿率up!...没思路的同学可以深入挖掘一下。全部论文+开源代码需要的同学看文末。

2025-04-18 12:20:56 342

原创 YOLO永不过时!全新轻量级版本拿下中科院1区TOP!创新性MAX

近期看见很多,其中拿YOLOv8n、YOLOv5改的比较多,当然还有最新版的,发一区到三区的基本都有,可创新空间很大,看来YOLO依然是我们“水论文”的好选择。分享几个高区成果:Neurocomputing(二区)上的YOLO-ELWNet,基于YOLOv3改进,猛猛超越其他轻量级OD模型;还有Comput Electron Agric(一区)上的CO-YOLO,基于YOLO11n架构,实现大幅提高姿态识别效果。另外还有一些新研究,非常推荐想用YOLO发论文的同学研读,无偿分享。

2025-04-17 10:17:21 429

原创 一天连发两篇Nature正刊!谷歌医疗LLM杀疯了!

谷歌也是厉害,不久前1天之内连发2篇Nature,都是关于的,模型都叫AMIE,分别对诊断对话和诊断推理做了优化,并做了随机双盲实验,验证了AMIE出色的辅助诊断能力。当然,作为AI领域最被看好,且一直不缺讨论度的方向,我们国内也不缺医疗LLM优秀成果:杭州“智诊科技”的WiseDiag,实现三甲专家人人可用,是全球领先的医疗AI大模型!这些成果证明了医疗LLM市场的火爆,在科技界大佬们的推动下,研究前景只会愈发广阔。这里也推荐一些需要参考的可直接领取我整理的,基本都有代码,方便复现找灵感。

2025-04-15 17:55:58 429

原创 入选CVPR 2025!清华&华科大提出超强异常检测新方法!学会你也能发顶会

有新突破了!清华和华科大推出了INP-Former,从单张图像中提取正常模式,展现出卓越的性能和强大的泛化能力!成功被CVPR 2025收录。仔细一瞧,今年的CVPR上异常检测相关的研究还挺多,比如最新零样本工业缺陷异常检测SOTA:AA-CLIP,还有突破跨领域限制的UniVAD,通过统一模型实现无需训练的泛化异常检测!这些成果也足以证明,而且根据其在AIGC等新兴技术领域的拓展,未来在方面应该会更有搞头。同时,我们也可以关注可解释、低资源等核心挑战,再结合垂直场景的深层次需求做创新。本文整理了。

2025-04-14 17:49:29 466

原创 2025年值得关注的15个RAG开源工作

想必各位都碰到过大模型瞎回答的情况,也就是大模型“幻觉”。而,就是解决这个问题的核心技术之一,在提升大模型回答的准确性和可靠性上,它拥有不可替代的作用。鉴于大模型发展的必然趋势,以及对效率、可信性、实时性持续增长的需求,关于RAG的研究也必然是焦点。再加上,未来文本、图像等多模态扩展和垂直领域应用将成为主流,RAG的发展机会只多不少。今年,我们对RAG的创新主要围绕等方向。建议论文er注意结合新兴技术与实际需求,多关注技术落地中的瓶颈问题。为方便找idea,我这边还整理了,需要参考的直接取。

2025-04-11 17:57:34 737

原创 凭借SAM+多模态又发一篇CVPR!字节&北大都在做,跟上别掉队了!

前阵子,迎来了新突破,字节、北大联合提出了市面上第一个结合SAM2和LLaVA的多模态大模型,在视频编辑和内容创作等任务中实现了SOTA性能。实际上,这方向的,去年CVPR/ICML/NeurIPS等顶会中相关论文占比近1/3,今年的CVPR 2025上,SAM+多模态更是火热(比如实现了视觉与任务统一的SAGE方法),无疑是发论文的好选择。如果感兴趣,建议同学们抓紧上手,SAM+多模态现在。

2025-04-10 17:41:14 416

原创 冲上中科院1区TOP!“频域+PINN”发高分SCI易如反掌!

新成果发表在Applied Energy(中科院1区TOP)上,一个基于频域物理信息的神经网络FD-PINN,在三维时空风场预测任务中性能出众。这种结合通过将频域物理约束融入PINN的损失函数,提升模型对频变特性的捕捉能力,在许多应用场景,尤其是波动主导的物理场景中拥有不可替代的作用,如果准备入手,今年比较推荐高频Helmholtz方程求解,声学超材料逆向设计,电磁散射快速仿真等课题,同时也建议论文er从具体应用痛点切入,设计问题导向的频域优化策略。需要参考可看我整理的,有代码。

2025-04-09 17:03:04 431

原创 入选ICLR‘25 Spotlight!深度强化学习(DRL)迎来新突破!

近年来,相关的成果在顶会顶刊上接受度普遍较高,经常上榜ICLR、Nature、Science等。比如ICLR 2025上的一篇Spotlight,由清华团队提出,介绍了一种SmODE网路,让深度强化学习的控制更加丝滑!另外还有复旦、同济等联合提出的全新社区布局生成方法,也是基于深度强化学习...从这些成果来看,目前关于深度强化学习的研究多围绕合,尤其是结合注意力机制、GNN等,因为可以明显提升算法性能,已经成了顶会的大热选题。如果想深入挖掘,除了以上这些角度,也可以考虑。

2025-04-08 17:05:00 978

原创 2025年还在用KAN网络的也是神人了...

自从KAN的原始论文发表,相关研究就层出不穷,比如前段时间港中文提出的很有代表性的U-KAN,在准确性以及计算成本方面遥遥领先。还有刚公布录用的ICASSP 2025,其中关于KAN的创新成果更是不少。Nature子刊以及IEEE上也有优秀成果陆续发表,比如CKANs模型、PIKANs架构...可见从这些成果来看,目前关于KAN的创新大多都从等角度切入,大家找idea也建议从这些开始,需要参考可直接看我整理好的,基本都有开源代码。

2025-04-07 17:34:38 795

原创 频频登顶Nature子刊,UNet实在太好用!

UNet自被提出以来,已经被引用超过5万次,至今仍然是各大顶会顶刊的常用baseline,关于它的改进自然也是相当火热,近些年更是频频登上Nature子刊。简单看了一些成果,可以说是五花八门,主要围绕等几个方向展开。不过除了医疗这个核心场景,UNet在工业与新兴领域也有了不少拓展,对于论文er来说,等于又有了新的创新空间,建议感兴趣的同学抓紧搞起。如果需要参考,我这边也整理了,包含了上述的几个细分方向,基本都有代码,无偿分享~全部论文+开源代码需要的同学看文末。

2025-04-03 16:20:34 797

原创 Mamba杀入遥感图像!11个全开源idea,助你无痛发顶刊!

一方面,Mamba相关的研究不算太卷;另一方面,Mamba强大的全局建模能力和高效的计算效率,完美切合遥感图像领域计算效率、长距离建模、多时相分析等方面的需求。因此,在众多对实时性要求高的场景(比如城市规划、国防安全等)中,Mamba+遥感图像的优势巨大,它的落地前景自然广阔。相对的,关于它的研究成果也逐渐增多,不少高质量新成果陆续发表,比如顶刊TGRS上的ChangeMamba。如果大家感兴趣,趁这方向还处于低饱和状态,抓紧上车。创新建议紧扣遥感数据特性(比如多模态、多尺度),重点在上突破。

2025-04-02 17:16:20 705

原创 (CVPR 2025)卷积网络复活!港大最新改进版CNN涨点起飞!

有人说现在研究CNN已经没啥意义了?不如先看看今年CVPR'25上超多的CNN成果。这其中,港大最近重磅推出了新型纯CNN架构OverLoCK,性能连超传统CNN、Transformer与Mamba!实力证明而且,CNN在图像、视频等领域仍然是主流,我们在轻量化和结构创新上的改进也在持续推进CNN的效率与性能,现在的CNN在一些新兴的应用场景(比如元宇宙)中也有了进一步拓展,因此,对CNN感兴趣或有需求的同学不要犹豫,抓紧时间搞创新。目前围绕CNN的创新主要有(比如LSTM),其中结合小波变换相当火。

2025-04-01 17:31:11 1633

原创 Transformer+UNet到底是谁想出来的点子!用来创新真的太绝了!

其实不仅仅是这领域,这种技术在需要处理大尺度图像、长程依赖、多模态数据的任务中都很关键,源于其结合了UNet的多尺度特征提取能力和Transformer的全局建模能力,因此应用场景相当广泛。对应的,近年关于Transformer+UNet的研究越来越火热,论文数量持续增长(如CSWin-UNet、GS-TransUNet、TSUBF-Net等),可参考的优秀成果相当多。不过目前这方向在计算效率、多模态融合、轻量化设计、特定场景下的优化等方面依然还有改进空间,值得我们深入挖掘。

2025-03-31 17:28:53 974

原创 “具身智能”顶会大爆发!李飞飞新作获最佳论文,这思路我吹爆!

今年是越来越火了,李飞飞团队的成果一个接一个,上回还是荣获CoRL-LEAP研讨会最佳论文奖的ReKep,这个月月初又发布了𝗕𝗥𝗦,一个解决机器人在家庭任务中全身操作问题的综合框架,500美元就能让机器人帮你干一切家务!另外还有许多成果成功登上各大顶会,足见具身智能!加上之前看过的麦肯锡预测,到了2030年,全球具身智能市场规模可能达到数十万亿元,!入局不亏。那么问题来了,未来我们该向何处发力?鉴于具身智能泛化性等核心问题尚未解决,建议考虑跨学科融合、底层技术革新等方向。我还整理了,又打包了。

2025-03-28 11:11:35 434

原创 Mamba杀入图像增强!26%算力碾压SOTA!字节、华为都在做...

当前视觉领域对高效长序列建模需求激增,对这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。因此短时间内,就有不少Mamba+图像增强的成果陆续发表,比较突出的有字节等团队提出的图像恢复网络VmambaIR,仅使用26%的计算成本就实现了超越SOTA的重建精度,还有华为诺亚方舟实验室等提出的基于Mamba的图像增强方法TAMambaIR,计算效率起飞。其他还有不少值得参考的,我挑选了分享给大家,基本都有代码,搞科研还是离不开巨人的肩膀的。

2025-03-26 17:22:00 826

原创 左手CVPR,右手顶刊!医学图像异常检测“登峰造极”进行时,冲就对了!

当下医学影像数据激增,我们对AI辅助检测的需求更加迫切(意味着工业价值高),再加上现在的技术仍然存在缺陷(意味着迭代空间大):数据标注成本高、异构性大等。可见无论是在学术界还是工业界,医学图像异常检测都备受关注。目前,这方向还是围绕等角度深入,另外还出现一些新兴的创新角度,比如4D时空建模、非监督域适应等,大家有兴趣可以研究研究。值得一提的是,这方向比较注重"临床价值-技术创新-落地可行性"平衡,建议从具体临床场景切入。如果需要参考,可直接看我整理的,包括顶会顶刊,基本都有代码。

2025-03-25 17:21:05 353

原创 审稿人最爱的技术融合!YOLO+SAM双剑合璧!速度与精度All in

众所周知,一些领域对速度与精度的要求都很高,比如自动驾驶、机器人交互、医疗影像...为了满足这些需求,推动场景的落地应用,针对的研究逐渐火热,成为了当前CV领域的热门研究方向。原理在于,YOLO以实时性为核心优势,但分割精度不足;SAM通用分割能力强,但推理速度慢。这两者结合,既能提供快速目标检测框,又可以基于检测结果精细化分割,完美实现!为动态场景下的高效精细感知提供了新思路。

2025-03-21 17:20:54 728

原创 顶会新宠!剑桥凭“机器学习+因果推断”杀疯ICLR!2025发论文的黄金赛道来了!

看了这几年各大顶会的投稿趋势,发现相关的论文增长迅猛,研究热情高涨。比如ICLR 2025上剑桥大学提出的Celcomen模型,首次实现空间转录组学因果推断可识别性。不仅如此,机器学习+因果推断在工业界的需求同样旺盛,微软、Uber等企业纷纷入场,医疗、金融、自动驾驶等领域还存在大量未解决的因果建模问题,这些可都是丰富的应用场景和创新切入点。2025年,我们可以从。

2025-03-20 16:59:50 634

原创 多模态对比学习太香了!双斩CVPR/NeurIPS!新成果及开源代码已扒

它最近在各大顶会上(尤其是CVPR)可是相当受欢迎,比如NeurIPS上的CILPLoss模块,性能达到新SOTA;还有CVPR上的BadCLIP方法、HACL方法...多模态对比学习的优势在于它,尤其在多模态表征学习、跨模态对齐、预训练模型等领域表现相当好,研究潜力巨大。这方向的创新路径也很广泛,包括动态融合、处理缺失模态、引入因果推理等。不过根据当下的研究进展,建议大家还是从等多角度切入做创新。如果需要参考,可直接领取我整理的全部论文+开源代码需要的同学看文末。

2025-03-19 17:42:37 1038

原创 入选CVPR 2025!何恺明联手LeCun改进Transformer!新思路学到就赚到~

何恺明大佬这几天又整了个大的,和LeCun联手提出了一种没有归一化层的Transformer,性能比传统Transformer更强!而且他们甚至只用了9行代码...大家感兴趣可以复现了试试。这波属实是Transformer的大突破!目前也已拿下CVPR 2025。加上前不久清华微软的爆火成果Diff Transformer,近期关于又迎来了新热潮!大家没idea的快冲!改进Transformer方法思路很多的,关键在于结合具体问题提出创新。比如针对计算复杂度问题,研究线性注意力或混合架构;

2025-03-18 17:49:07 563

原创 荣登Nature招牌1区Top!可解释的多模态融合模型迎来新突破!

现有关于多模态融合的研究多集中在模型性能的提升上,对可解释的探索比较少。但实际上,可解释性是提升用户信任、优化模型决策的关键,具有重要的研究价值,符合当前学术界对透明AI的迫切需求。因此,想要在多模态领域拥有成果,是个很好的选择。中山六院团队的可解释多模态融合模型Brim,以及Nature子刊上的可解释纵向多模态融合模型,都是近期非常值得参考的研究,推荐感兴趣的论文er研读。我另外还准备了,方便找idea的同学做参考。实在没思路的话,推荐考虑细分领域(如医疗)的实际需求,从(如动态注意力)、

2025-03-17 18:07:40 702

原创 连看几十篇YOLO论文,发现了YOLO中稿的“潜规则”!这妥妥发SCI的捷径!

看了前几天刚发表的YOLOv12,深感YOLO研究之热,这迭代速度也太快了...不过往好处想,也说明YOLO相关的研究需求非常旺盛,属于SCI常客,再加上YOLO在自动驾驶、机器人导航等领域的广泛应用,用它发论文还是比较容易的。关于,现在比较流行的有(如引入Mamba)、(如CIoU)、(如YOLOv10的NMS-Free设计)。针对现有的工业需求和未来发展趋势,我们也可以从等实际问题角度进行探索。如果大家想发论文,建议先从上述主流(如新模块设计)入手,参考多资源也多,入门轻松。我这边整理了。

2025-03-14 17:56:47 859

原创 李飞飞&DeepSeek都在用!模型蒸馏爆火!在CVPR上杀疯了...

被李飞飞成本不到150元的推理模型s1震撼到了,甚至他们只花了26分钟...研读后发现秘诀只有一个:蒸馏。简单来说,就是将谷歌Gemini 2.0的推理能力蒸馏到阿里Qwen2.5模型中,得到s1,效果媲美DeepSeek-R1和OpenAI o1。不得不赞叹的强大,这种将大模型知识迁移到小模型上的技术,在降低训练和部署成本方面遥遥领先。这也是它成为s1秘诀和DeepSeek核心技术的原因,非常贴合当下“技术普惠”的发展趋势,研究前景明确。当前,模型蒸馏仍然是,但成熟度比较高。

2025-03-14 17:54:52 506

原创 拿下CV顶会!多模态特征融合+Mamba新方法,性能超越SOTA!

Mamba,一种具有强大信息整合能力的技术,加上多模态特征融合,不仅能提升模型在处理复杂任务时的准确性和鲁棒性,还拓宽了应用边界:从智能交互到复杂数据分析的多个领域...都涵盖了。创新空间和落地应用前景可见一斑。去年至今,相关的论文呈爆发式增长,其中顶会顶刊成果占比可观,比如ICASSP 2025的DepMamba模型,计算效率、准确率等都优于SOTA。如果有同学也对此感兴趣,想出成果,推荐优先探索,结合真实场景需求设计创新点。为方便大家找参考,我已经整理好了。

2025-03-12 17:44:57 1325

原创 创新耐打!时间序列+聚类这么做,顶会稳了!

它同时也是数据挖掘与模式识别的核心课题,能高效挖掘数据模式,提高预测和分析的准确性,非常适合多变的数据环境,比如金融、医疗、零售、制造业等领域。这方向近年来在工业界的需求增长不断,研究前景广阔。当前顶会上相关论文成果多聚焦于跨领域模型构建与实际场景适配,比如华东师大的DUET。如果想发论文,建议从切入,结合最新技术(如扩散模型)搞创新。本文整理了,开源代码已附,包含最近的顶会顶刊成果,供各位做参考,没思路或有其他问题也欢迎交流~全部论文+开源代码需要的同学看文末。

2025-03-11 17:43:18 774

原创 深度学习+多模态数据融合,顶刊超神了!

还在搞传统的?不如考虑。优势在于能融合不同模态的特征信息,实现模型理解、预测和决策能力的大幅提升,可以帮助我们开发出拥有更高性能的智能算法和模型,近期的不少一区顶刊上陆续发表了相关研究,热度可见。不过深度学习+多模态数据融合仍然处于快速发展期,数据异构性、模态缺失等问题尚未解决,还是有创新空间的,尤其在解决实际挑战或提出新型融合架构方面。在未来更复杂场景下,显然这类多模态融合技术将成为核心支撑,且技术迭代必然很快,如果大家感兴趣就得抓紧了,找idea可以直接看我整理的,速度上车。

2025-03-07 17:21:02 955

原创 融合LSTM与Transformer做时间序列预测,发高分轻轻松松!

不仅巧妙融合了二者的优势,还构建了一个强大而灵活的预测框架,为我们处理复杂时间序列数据提供了更牛x的工具。这方向如今是深度学习领域的热门研究主题,前景非常可观,在工业物联网(如设备故障预警)、智慧城市(如交通流量预测)、生物医学、环境科学(如气象预测)等领域都有广泛应用。相关成果频繁发表于顶会顶刊,尤其是跨学科相关的。如果想做创新,建议聚焦,并结合实际工业需求设计实验(如大时滞、多变量场景)。本文整理了,需要参考的自取~全部论文+开源代码需要的同学看文末。

2025-03-06 18:29:48 1394

原创 喜提CVPR 2025满分!数据蒸馏取得新突破!速度up20倍,GPU占用仅2G

敢信一块2080Ti就能做大模型?上交大提出的全新数据集蒸馏方法NFCM做到了,不仅速度提升了20倍,GPU占用更是只有2G!相关论文获得了CVPR 2025满分!作为DeepSeek的核心技术,数据蒸馏因为能通过压缩数据集或知识迁移,,成为了资源受限场景(比如移动设备)必备技术。又因为其涉及子领域众多(比如分布匹配),还与生成模型等技术交叉,从而拥有了相当。可谓产业与学术的双重落地,无疑是机器学习领域的研究焦点。

2025-03-05 17:17:37 1295

原创 Kimi“撞车”DeepSeek!新一代注意力机制的极限突破!

近期,各方大佬在注意力机制上又“打起来了”。首先登场的是顶流DeepSeek,新论文梁文锋署名,提出了一种新的注意力机制NSA。同天,Kimi杨植麟署名的新注意力架构MoBA开源。紧接着,华为诺亚提出高效选择注意力架构ESA。这神仙打架的场面太震撼(论文解析在下文),同时也证明注意力机制依然是2025最受追捧的研究热点之一,仍处于快速发展期,深度学习搞创新少不了。

2025-03-04 17:02:39 1025

原创 特征融合这样创新!与GNN结合顶天,一区TOP刊如囊中物!

在处理具有复杂关系结构的数据时,为增强模型的表示能力和预测性能,我们考虑。优势在于能整合多种特征信息,并通过GNN捕捉节点间的复杂关系,尤其适合医疗数据分析、情感识别等应用场景。这结合也是双热点叠Buff,加上数据驱动优势(适用于非欧数据,覆盖场景广,有实验对比优势),关注度自然水涨船高,顶会顶刊成果已然不少。比如一区TOP刊IEEE TC上的基于GNN的时频双流网络,表现超越了SOTA。为方便感兴趣的同学找创新点,本文整理了。

2025-03-03 17:52:19 885

原创 狂发顶会的Mamba,融合傅里叶变换再出神作!

核心优势在于通过增强频率相关性建模和优化计算过程,可以显著提升信号和图像处理的效果与效率,应用场景已扩展到了医学影像分析、视频时序建模等各种任务。这方向近期的研究趋势逐渐火爆,新成果有图像去雨框架Fouriermamba,去雨性能超越SOTA;还有新型3D医学图像分割框架EM-Net,参数量比SOTA少一半,训练速度快了2倍...这些成果主要是围绕。如果大家想入手,除了上面热门的角度,还推荐往等细分方向考虑,趁着还不太卷抓紧上车。我这边整理了,需要参考的同学不用多花时间了,直接来拿~

2025-02-28 17:59:46 886

原创 结合CNN与Transformer,实现遥感图像处理性能巅峰,霸榜顶会顶刊!

还记得这个热门组合吗?最近发现它在领域有不少高质量成果。比如顶刊Nat. Commun.上的GlaViTU 模型,一区IEEE TGRS上的SparseFormer(用于稀疏点标注遥感语义分割)、 LGCNet 模型等。其实这也是遥感图像领域的发展趋势,这类混合架构通过轻量化设计(如Lite-Mono参数减少80%)和高效注意力机制(如LeWin模块),显著提升任务性能,完美契合工业界需求,研究前景很广阔(论文er可试)。

2025-02-27 20:04:19 1177

原创 物理信息强化学习爆火!登上IEEE Trans一区顶刊!

近日顶刊IEEE TSE(一区)上还发表了相关成果,提出了一种基于约束强化学习的PIRL方法,计算速度大幅提升。PIRL属于PIML与强化学习的交叉领域,结合了物理规律的严谨性与强化学习的灵活性,在数据稀缺领域(如航空航天)、动态复杂系统(如湍流控制)、工业自动化等场景表现相当突出。所以这方向无论,当下还有很多创新思路可搞,比如...没idea的同学可考虑。本文整理了物理信息强化学习,有代码的都贴上了,需要参考的可无偿获取。全部论文+开源代码需要的同学看文末。

2025-02-26 18:07:05 831

原创 多模态LLM+Mamba组合出击!推理加速约20倍!GPU显存减少75%!

发现一篇效果很好的论文,上周刚刚发表,论文提出了Multimodal Mamba多模态解码器模型,通过将Transformer模型的知识蒸馏到线性复杂度的Mamba架构中,实现了20.6倍的速度提升和75.8%的GPU内存节省。这效果在MLLM+Mamba一众成果中也算非常突出。近些年MLLM发展迅猛,再加上Mamba高效的分布式计算和强大的上下文理解能力,MLLM+Mamba这一结合已是当前极具潜力的研究方向,

2025-02-25 17:34:09 1067

原创 变种PINN,更小的误差,更高的性能!

刷到篇2025年西工大刚发的文章,讲的是PINN的新变种——VW-PINNs(PINN中PDE残差的体积加权方法),研究表明其具有更小的误差,更好的性能。如果对PINN比较熟悉,应该很好理解VW-PINNs(下文有解析)。近年来PINN相关的研究频繁发表于《Nature》等顶级期刊,加上其在交叉学科的应用需求,以及丰富的开源代码资源(多数改进方案都开源),PINN的变种研究已经成了的一个方向。当前,PINN改进比较热门的创新有算法优化、架构创新、应用拓展等,未来也可进一步聚焦。

2025-02-21 17:21:33 725

原创 KAN备受审稿人青睐!结合小波变换就能发一区,厉害了

自提出至今,一直备受顶会青睐,前不久KAN被ICLR25接收为Oral Paper,与之相关的研究越发火热,其中的思路尤盛。一方面,小波变换的多尺度分析能力可以为KAN提供更丰富的特征表示,从而提高模型的性能。另一方面,KAN的灵活性和表达能力可以让这组合在处理复杂数据集时表现出色。二者可谓相辅相成,在特征提取、故障诊断等方面发挥了重要作用,如今更是作为热门前沿方向,KAN+小波变换的多篇高质量的论文已经在多个顶会顶刊上发表,比如一区上的一篇成果,通过结合两者,在乳腺癌诊断各指标上都非常出色。

2025-02-20 18:01:53 738

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除