推荐系统遇上深度学习(一二四)-[美团]面向大规模推荐系统的双重增强双塔模型...

8aa958ce07556cb62c21ccfabe7d40e0.png

各位小伙伴们中秋快乐吖!今天给大家带来一篇美团在DLP-KDD 2021上中稿的一篇论文,主要的出发点是解决双塔模型中两塔之间缺乏信息交互,以及在美团首页推荐中,面临多场景、多业务融合且不同业务类别分布不均衡的特定业务问题。一起来学习一下。

1、背景

在大规模工业界推荐系统的召回阶段,大都采用的是双塔模型,即通过query tower(user tower)和item tower分别得到query(user)和item的向量表示,并通过cosine距离计算二者的相似度,进而选择相似度高的item进入到排序阶段。传统的双塔模型面临以下两方面的问题:

1)两个塔之间缺乏信息交互,影响模型的收益空间
2)在美团首页推荐或其他的推荐场景下,item的种类是十分丰富的且非常不平衡的,那么模型的训练由主要的种类所主导,对于数量较小的种类的item效果会受到影响。

为了解决以上两方面的问题,论文提出了双重增强双塔模型(Dual Augmented Two-tower Model,简称DAT)。论文设计了Adaptive-Mimic Mechanism,来为每一个query和item学习一个增强向量,增强向量代表了来自另一个塔的有用信息;同时,论文还在训练阶段引入了Category Alignment Loss来缓解类别不平衡的问题,一起来看一下。

2、DAT模型介绍

模型的整体结构如下图所示:

0d3387e4c8f9dce1f40f4e7afca93004.png

接下来,根据如上的模型结构图,我们进行详细的介绍:

2.1 Embedding layer

Embedding层无需进行过多的介绍,将query和item对应的离散特征转换为对应的Embedding。

2.2 Dual Augmented layer

对于每一个query和候选item,赋予一个对应的增强向量au和av,并与Embedding层得到的Embedding进行拼接,作为两个塔的输入。如对于uid=253,city=SH,gender=male的用户&#x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值