个性化商品搜索相关研究梳理

© 作者|张君杰

研究方向 | 推荐系统

在商品搜索模型中,个性化的引入不仅会改善用户的搜索体验,也会为电商公司提供更高的收益。近年来,研究人员针对如何在商品搜索中引入个性化开展了大量工作。本文对个性化商品搜索的相关研究进行了整理与分析,文章也同步发布在AI Box知乎专栏(知乎搜索 AI Box专栏),欢迎大家在知乎专栏的文章下方评论留言,交流探讨!

引言

    近年来,随着互联网的蓬勃发展,电子商务变得越来越流行。当用户在购物网站上购买商品时,搜索引擎会根据用户递交的查询,搜索出相关商品的排序列表,帮助用户挑选商品。然而,用户递交的查询通常仅由几个关键词组成,其表达的意图往往模棱两可,无法反映用户潜在的搜索意图,进而导致搜索结果不尽如人意。除此以外,用户对商品的偏好可能是多样化的,如受到年龄,性别,以及当前环境的影响。因此对于相同的查询,向不同的用户返回相同的搜索结果显然是不合适的。为了改善搜索性能,搜索引擎应当利用用户的历史行为(如评论,评分等)建模出用户的喜好,从而检索出满足用户搜索意图的商品,也即个性化商品搜索。本文整理了个性化商品搜索模型的部分研究进展,欢迎大家批评和交流。

研究进展

1. Learning a Hierarchical Embedding Model for Personalized Product Search (SIGIR 2017)

    作为个性化商品搜索领域的开山之作,本文针对用户对搜索结果提供大量显示反馈(评论)的搜索场景,提出了hierarchical embedding model (HEM),联合学习用户,商品,查询的隐语义表示,并利用查询和用户向量的凸组合,来预测购买的商品。

    具体来说,HEM可以分为三个部分

1首先,受paragraph vector model启发,HEM通过构建语言模型,从用户和商品的评论中来学习他们的分布式表示,即要求用户和商品预测评论中单词:给定用户或商品的表示03ab81b165861db905a7a0038905d8b9.png,以及与他们相关的评论9766d14708045b5f9af5c70f9f715574.png中单词的表示e62772ccd45dd28f6100a9aa8ffad43c.png. 从83887a17cb379228264982781dd4fffa.png的语言模型中生成d1167a2d1e12750f0d1ea86fc0853d00.png的概率即可定义为

5f67d590115ef4acaa7d3f13edad9429.png

通过优化该概率,从而优化d2751cfb66d9dd09c0ab80d01d41207a.png的表示。

2)其次,利用查询中的关键词,来学习查询的表示。本文通过在平均词嵌入的基础上加入非线性映射,得到查询向量:

89f71709dab201c8f36c59df6820a297.png

3)模型的第三部分在于建模用户的购买意图,并以此来预测购买的商品。作者认为用户的购买意图97ee2243472f0a176d5e0f4a1c49e8ae.png 由查询意图eff74c8ccf8a242d9d73de2a60bed295.png和用户偏好e457b201d7cdc8b0e3f6030852e48cba.png两部分组成,并假设0ef5c2175e7c9d23c0e32697da2f0ea6.png63345f35d29020b4cdc779a9af652ac0.png不相关,通过二者的凸组合得到购买意图51377db977efeaf0b63d304e86c6cf08.png

    此时用户购买商品的概率即为

59506e4d77c66a8f43954f73060f52d7.png

bd57483fbe1c9adb2da779bedf9753ec.png

    将上述三个模块组合,通过极大化被观察到的用户-查询-商品三元组的似然,学习到三者的分布式表示,即最终的优化目标为:

cb2e90cb80fd75458b5265f42fae76cf.png

2. Attentive Long Short-Term Preference Modeling for Personalized Product Search (TOIS 2019)

    本文作者指出,在建模用户偏好时,需要同时考虑长期偏好以及短期偏好。前者指用户固有的,且相对稳定的购买偏好,如喜欢的颜色,合适的尺寸等,一般受个人背景潜移默化的影响。而后者指的是用户在较短时间内且变化频繁的偏好,受偶然事件的影响,如季节变化等。这二者都会影响用户当前的购买意图。为了同时建模这两类偏好,作者提出了 Attentive Long Short-Term Preference model(ALSTP). ALSTP通过两种注意力网络,分别学习长期,短期偏好及其与查询之间的相关性,使得模型能够正确的建模用户当前的购买意图。

    总的来说,模型可以分为三个部分:短期偏好建模(ASTPM),长期偏好建模(ALTPM)以及用户购买意图建模(QRI)。

24e058689e24b707aefe13303ff293a6.png

1)首先是短期偏好建模,ASTPM通过近期购买的 m 件商品来表征短期偏好。具体来说,将用户最近购买的 m 件商品的表示66dffa15f25dc9dc98b24b2f92ea5b6f.png 作为GRU模块的输入,并以其隐层b6d87fe431203d57b528d5667d1ec87f.png 表示用户的短期偏好。然而这 m 件商品对于当前的查询来说并不是同样重要的,因此作者引入注意力机制,分别计算前 m 次查询与当前查询的相关性,得到最终的短期偏好1f1d252c5dbc15259e34515955004533.png

2)其次是长期偏好建模,长期偏好相对稳定,更新缓慢。ALTPM通过早期购买的一组商品来初始化长期偏好,并通过随后购买的商品对其更新。令acf009392ed196e25bd143d473e2ae0d.png 表示长期偏好,用最初购买的 m 件商品的表示来初始化,然后每购买 m 件商品就对其更新:61817e42f80c3d5037855c96503a1fa6.png,其中b75a5775473b65cb566dd54fe05594cc.png表示短期购买的 m 件商品在GRU模块中最后一个隐藏状态。同时,针对长期偏好的不同方面,引入注意力机制得到长期偏好表示34dee2ef51224e28a5a9c6d64f42581d.png

3)最后是用户购买意图建模,将查询03ec200b9e9f9ab29ca7a2d3742070d1.png,短期偏好e05aef1c3d0be201dcf3ce22c3907d7d.png,长期偏好6550b2560835c28c4466b584fa6ccbe6.png拼接并输入至DNNs,得到购买意图76dff325ed8128e6e0d5e2e8372cacd1.png,则每个商品的得分即可由efafbcbc8e4bcff09dc61d1ea03e6987.png计算,其中3c97a1ac16db0c91d3e0b3eae19202b3.png为距离度量函数。

3. A Zero Attention Model for Personalized Product Search (CIKM 2019)

    本文作者观察到个性化并不总是具有积极的影响。只有在个体偏好与群体偏好显著不同时,个性化模型才会优于非个性化模型。尽管引入个性化机制可以提供更多有关用户偏好的信息,但这也不可避免的引入了噪声,有时反而会损害检索质量。因此,确定何时以及怎样个性化是非常重要的。

    作者通过大量预实验发现,个性化在商品搜索中的重要程度往往取决于查询及其与用户的购买历史之间的交互。为此,作者提出zero attention model (ZAM), 通过在用户的历史购买序列上应用注意力机制并允许注意力网络关注额外的零向量,成功的做到了不同程度的个性化。

    具体来说,令 e12e55a2a57621e397f4cb448bb9f822.png 表示零向量,则用户 f144fd29321bc334673beac3c2383ccb.png 即可表示为

2c936daaefb91c75ddfd8d42a0165ef2.png

    其中7c5547d33099a495d6cf57ee9c58b546.png 是查询5ebf2b187e4cfd3de369fd448a46f55b.png对零向量的注意力系数。

    令4653d4a7b293bb2632b7e9ccad622017.png表示由50bfcbedb68f9ba1e600c90d592c2c14.png构成的向量,则上式可变形为

b5b268a294371b6d3df8cd3da95c8408.png

    其中8eb7725448cdd1029f73307f59d9bbd4.png是由用户历史购买的所有商品的表示组成的矩阵。从上式可以看出,这实际上是关于434234e5beb07008811ec264974dc903.png的sigmoid函数。也就是说引入零向量实际上就是通过引入激活函数,动态的控制用户购买历史在当前搜索中的影响。此时,只有当用户历史购买商品与查询相关时也即用户对与当前查询相关的商品表现出显著的兴趣时,用户表示ceef2a4c365dc4c872632ebbc0b3b0fd.png才能起到作用。否则搜索将由查询向量a47bfdb17473a82de6f4d5643ef6d827.png 主导。从而使得ZAM能够在不同的搜索场景中进行不同程度的个性化。

b95c18f37aba95bee79d3afa672fc531.png

4. A Transformer-based Embedding Model for Personalized Product Search (SIGIR 2020)

    本文作者提出,尽管ZAM通过在注意力机制中引入零向量,实现了动态控制个性化的程度。但由于用户购买意图3afb61b95e52af4c6c8d8b16a8171b12.png仍建模为1d5dade9b20f67210e3edb8c691f3ad8.png。因此在ZAM中,个性化最多与查询相同重要。为此,作者提出TEM,通过Transformer结构来编码查询和历史购买商品,从而做到从无个性化到完全由个性化影响的动态调整。模型的整体结构如下所示:

2f433ac853b3cca49f3fefbd9facb179.png

    具体来说,令91abe6626a785230b2d40713bb8fffe9.png表示用户e1b586e9b022b7182e2d442bde8b1043.png 的历史购买商品序列,通过将序列58dc68edc46ad04864726c86e4bdae61.png输入到66a0220ac7970a0fe6d4f545c19794f9.png层Transformer编码器中,用户的购买意图即可由查询ff6e0deaf57a19cc19c2f9be3feebd16.png在第fe5a06ee0c8aa1f12c120e48ad3a54f3.png 层的输出向量表示,即令57102011392b9c0c53cad85fc16607d4.png

    Transformer编码器使得d430fcb4ab7b6049d9de93e11e4d4dc8.png 计算了查询0ee70529893784573ae8f86159a800f6.png以及历史购买商品序列之间的交互。并且通过学习编码器中的参数,进一步提升了个性化程度的调整范围,做到了从无个性化到完全由个性化影响的动态调整。

5. Explainable Product Search with a Dynamic Relation Embedding Model (TOIS 2019)

    作者提出,搜索引擎和用户在认知商品的相关性方面存在一定差距。如果不对搜索结果加以解释,用户可能无法理解为什么搜索引擎会搜索出这些商品,导致搜索引擎实际效果不好。为此,作者提出Dynamic Relation Embedding Model (DREM). 通过联合建模不同用户和商品的知识以及静态和动态的关系来构建知识图谱。并以此来聚合多关系的产品信息,从而进行个性化搜索。最终在知识图谱上进行逻辑推断产生解释。

0fbce927f6881474ba73900d9558a925.png

    为了使DREM可以进行商品搜索,作者设计了一条特殊的边79263bf7dafed17b435ae0f54a45348c.png来建模用户和商品间的关系。但很显然,这种关系是动态的。用户的购买意图在不同的搜索会话中是不同的,没有搜索上下文,就无法确定用户与商品之间的关系。为此,作者分别进行静态和动态的关系建模。并在建模动态关系时,以用户提交的查询文本作为搜索上下文进行建模。

    DREM通过在知识图谱中寻找从e64d04430e631288f045f2f2e5d666f8.png1d115ced24249cd125ed854365aac78e.png的路径,来解释搜索结果。但由于数据稀疏,这样的路径可能不存在,为此作者提出Soft Matching Algorithm (SMA),通过Dijkstra算法以及计算匹配概率,找到最优的解释路径。

93eb8096541b72514ad75219869c1077.png

6. Structural Relationship Representation Learning with Graph Embedding for Personalized Product Search (CIKM 2020)

    作者认为之前的一些工作没有利用到用户搜索场景下的结构信息。为此,作者提出一种新的方法:Graph embedding based Structural Relationship Representation Learning (GraphSRRL),利用‘conjunctive graph patterns’进行图嵌入学习,从而学习到用户-查询-商品交互中的结构信息以及用户(查询,商品)之间的相似性。

    作者定义了三类conjunctive graph patterns:

1)用户8c6bb988d193ab089b19476d1921465e.png在提出相同的查询387c246df2ac01630d6058308aad566b.png下购买相同的商品43bfe3157efeb302241312ea871e1f0c.png

6653c4055a0e4deb949b23d8ce78744b.png

2)用户8fb73ceecbb10e141a50da3488f2abf8.png在提出查询 903d111eea246f2fcbd5376118a80801.png下购买了商品3bceaf22b143f346a578030252041732.png

3aa687fb61cef26552c95f3f4b041a60.png

3)用户 25012db2c3cce084ce0d1f5f2ab497a1.png分别提出查询f9499b4cb6374e616f196d69b7aa44d4.png并购买了相同的商品d5412e356e39d9373a4d6a5505ae5c52.png

bb134e5d4ca53afcb1fa4061cef5afdd.png

da63c6ccdb69d356380d7261dcb8d7d4.png

    模型整体分为两个模块:图嵌入模块以及个性化搜索模块。在图嵌入模块中,通过定义映射算子和交叉算子,利用这三类特征来学习交互中的结构关系以及用户,查询,商品的embedding.而个性化搜索模块则利用学习好的嵌入表示作为输入进行个性化搜索。

7. IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search (WWW 2022)

    与GraphSRRL类似,作者认为现有的工作没有充分利用到隐藏在历史交互中的协同信号。并且作者认为GraphSRRL仅利用到自己设计的三类conjunctive graph patterns,这是远远不够的。为此,作者提出一个新的模型:Interactive HyperGraph Neural Network (IHGNN)。基于历史交互构建超图,并以此来编码协同信号,从而改进个性化搜索的效果。

cdb0622c0e3936c655f4db9f82ee9641.png

    如图所示,IHGNN共包括四个模块:

1)超图构建模块:基于user-product-query历史交互构建超图0b30fb81f7a3c6c87a931b02f371e3f9.png,其中节点集4ee49751c2076e8e457270024cff0634.png包含全部的商品,用户及查询,超边集f4a984d0e152e8fec19c915e03ad05fe.png包含全部的58cbd2210a7d675ada1076540a6d7ea2.png三元关系。

2)Embedding 生成模块:初始化节点的表示。

3)聚合模块:利用邻接点信息来优化embedding。由于构建的是超图,因此信息分两步传递。对于任一个节点,先将其邻接点的信息传递到相关的超边中,再利用超边的信息改进该节点的表示。值得一提的是,作者认为传统的线性聚合方式是不充分的。在个性化搜索中,邻居节点之间的交互是一个非常强的信号。比如一位用户提出查询“女士包”,并购买了“爱马仕”牌的包,通过query与product之间的交互,可以生成出一段对建模用户偏好非常有用的语义:“女士奢侈品牌”。为此,作者提出需要建模邻居节点之间的高阶特征交互。

bee99d690eb3f25f3730e0b583878925.png

    具体来说,给定任一节点91ad6bb63a85d3898506b9174f1b03c7.png,对于任一与它相接的超边ed799caf47c630306ba67041685dedcd.png,先将邻接点d6b9ca9e9a58a18ea546b104feb8b29c.png的信息传递到0555a2a91ef4d667278c82a248d7bda1.png中:

c2d73d692dff965e006f98f5e39db5eb.png

    再将超边的信息传递给11a0fc730a777aeb5cba93d2748d49e3.png :

0ab1ae0af63522546f7947ffea02bb6b.png

4) 预测模块:利用学习到的embedding进行预测。GraphSRRL利用自己设计的conjunctive graph patterns进行学习,如用户8610a76e59058332043a6f6f1590ac0b.png在提出相同的查询258374696c2631c545bf90f5a7d68061.png下购买相同的商品10b4bdebb983c87c80199b0646841e2c.png,则b18a6e0527c2dda5e256d740e03d8fd5.png应该具有类似的偏好。对于这样的特征,IHGNN也能提取:在embedding aggregation下,f11c5556e2ba264b258d6fc09fefa995.png的信息会同时传递给de03980d2d8f9b54b2ef89bc5934bb97.png,促使d5ae06a28543b5496e0067d67a3acf45.png相似。除此以外,IHGNN还能提取更多的结构信息,实验也表明IHGNN效果优于GraphSRRL.

8. Learning a Fine-Grained Review-based Transformer Model for Personalized Product Search (SIGIR 2021)

    作者提出,现有的大多数个性化商品搜索模型都遵循着在语义空间表示和匹配用户购买意图以及商品的范式。在这种情况下,商品的得分仅能通过用户和商品级别的相似性来解释,而无法考虑细粒度的匹配,比如用户和商品的评论间的关系。因此,这些模型无法充分捕捉用户评论中体现的用户偏好以及商品评论中体现的商品特征之间的匹配关系。除此以外,尽管之前的一些工作尝试构建动态的用户表示,但是商品的表示一般都是静态的。在这种情况下,所有相关的商品评论都被认为同等重要,但这在面对不同的用户时显然是不合理的。

    为此,作者提出了review-based transformer model(RTM)来解决上述问题。通过Transformer结构来编码查询,用户评论,商品评论组成的序列。此时RTM可以在用户和商品之间进行评论级别的匹配,而一个商品取得高分就可以通过一些有用的评论受到更高的关注来解释。

    具体来说,令 q 表示用户提交的查询,853e99094d93290ba86c76d458b9394a.png2db2ad2fcff18e56dd72c8149b538455.png 分别表示8d018c666999b3a06cab0f1b09d011b5.png的评论。将序列2ffb17d47e9c109084e047751485af20.png输入到07d5b5d190f23a39ae10f08e311d1113.png层Transformer编码器中,使得查询,用户的评论,商品的评论可以互相交互。

01c7134bdf037f9a93d2d4ebaf0a7c98.png

    最终,RTM使用 d1a205800d1efa77bacf519abdc1c25e.png在最后一层的输出向量4593d41ed2559d39910f273352c3e4a2.png来计算商品3fb7fc44f67e30829954905202522980.png的得分。也就是说,给定用户5f987c95dcb9834c9d490549fe5b931b.png和查询 6cd8961ca48c4fcab0254a45d927be1b.png,商品 45721f14e180ec7a7b4bd2d5b630ba98.png最终的得分为413168cb50e61e1a13e754645497a870.png,其中 a2c5c5998d40c89c682fbb7785357db1.png

    与ZAM类似,RTM也可以做到从无个性化到完全由个性化影响的动态调整。但与ZAM仅考虑用户与查询之间的交互来决定个性化程度不同的是,RTM同时考虑了商品的影响。这使得即便针对相同的用户和查询,购买不同的商品也将导致不同程度的个性化。

小结

    在商品搜索模型中,个性化的引入无疑提升了搜索性能。通过学习用户的兴趣爱好,为每个用户提供不同的搜索结果,不仅改善了用户的搜索体验,也会为电商公司提供更高的收益。从以上文章可以看出,关于个性化商品搜索的研究方向多种多样,如怎样建模用户偏好,怎样利用交互中的结构信息,怎样利用用户反馈信息等等,都值得更深一步的思考与探索。

    希望本文能够帮助读者了解个性化商品搜索的相关概念与模型。欢迎大家批评与讨论。

参考文献

[1] Learning a Hierarchical Embedding Model for Personalized Product Search. SIGIR 2017

[2] Attentive Long Short-Term Preference Modeling for Personalized Product Search. TOIS 2019

[3] A Zero Attention Model for Personalized Product Search. CIKM 2019

[4] A Transformer-based Embedding Model for Personalized Product Search. SIGIR 2020

[5] Explainable Product Search with a Dynamic Relation Embedding Model. TOIS 2019

[6] Structural Relationship Representation Learning with Graph Embedding for Personalized Product Search. CIKM 2020

[7] IHGNN: Interactive Hypergraph Neural Network for Personalized Product Search. WWW 2022

[8] Learning a Fine-Grained Review-based Transformer Model for Personalized Product Search. SIGIR 2021

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值