自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI大模型应用之禅

AI大模型应用之禅——禅与计算机程序设计艺术

  • 博客(6716)
  • 收藏
  • 关注

原创 LLM Based Multi-Agent System 基于 AI 大模型的多智能体系统

LLM-based Multi-Agent System 基于 AI 大模型的多智能体系统> 关键词:大语言模型、多智能体系统、人工智能、协作、自主性、分布式智能、任务分解

2024-08-27 01:21:59 1742 1

原创 AI人工智能核心算法原理与代码实例讲解:机器学习流程

在当今数据时代,海量数据的产生和积累为机器学习的发展奠定了基础。传统的基于规则的编程方法越来越无法满足复杂问题的需求,因此我们需要一种新的范式来处理这些数据并从中获取有价值的见解。机器学习作为一种数据驱动的方法,通过从数据中自动捕捉模式,为解决各种现实问题提供了强大的工具。决策树是一种常用的监督学习算法,可以用于回归和分类任务。它通过构建一个树状决策模型,根据特征值对实例进行递归分割,最终将实例划分到不同的叶节点,从而完成预测。

2024-08-20 01:14:53 870 2

原创 多模态大模型:技术原理与实战 多模态大模型的效果评估

近年来,随着深度学习的快速发展,人工智能领域取得了突破性进展。其中,大规模预训练模型的出现,如 GPT-3、BERT 等,极大地推动了自然语言处理(NLP)领域的发展。然而,传统的单模态模型只能处理单一类型的数据,例如文本或图像,无法充分利用现实世界中丰富多样的信息。为了解决这个问题,多模态学习应运而生,旨在通过整合多种模态的信息来提升模型的理解和生成能力。多模态大模型作为多模态学习的最新研究方向,近年来受到了学术界和工业界的广泛关注。

2024-08-12 00:26:06 948 1

原创 Python深度学习实践:分布式训练大型模型的策略

深度学习的起源可以追溯到20世纪40年代,当时神经科学家开始尝试用数学模型模拟人脑神经元的运作方式。然而,由于计算能力的限制和数据量的不足,早期的神经网络模型非常简单,无法解决复杂的实际问题。直到20世纪80年代,随着计算机硬件的快速发展和反向传播算法的提出,深度学习才开始逐渐兴起。2006年,Hinton等人提出了深度置信网络(DBN),并在图像识别任务上取得了突破性进展,标志着深度学习的复兴。分布式训练是训练大型深度学习模型的关键技术,可以显著加速训练过程、扩展模型规模、提高资源利用率。

2024-08-05 00:23:07 569 2

原创 基于用户购物行为的商品推荐算法研究与实现

随着电子商务的蓬勃发展,用户在电商平台上购物的频率越来越高,商品种类也越来越丰富。为了提升用户体验,提高用户粘性和平台盈利能力,电商平台迫切需要一种能够根据用户的购物行为,精准推荐用户感兴趣商品的推荐系统。深度学习: 将深度学习技术应用于商品推荐算法,可以提高推荐效果。强化学习: 将强化学习技术应用于商品推荐算法,可以实现动态调整推荐策略。多模态推荐: 结合多种数据模态,例如文本、图像、视频等,进行商品推荐。

2024-08-05 00:20:01 977

原创 AI人工智能深度学习算法:在生物信息学中的应用

在过去的十年里,人工智能(AI)和深度学习技术在各个领域都取得了突破性的进展。其中,生物信息学作为一个交叉学科,正在经历一场由AI驱动的革命。生物信息学结合了生物学、计算机科学和统计学,旨在解析和理解海量的生物数据。随着高通量测序技术的发展和生物大数据的积累,传统的数据分析方法已经难以应对日益增长的数据规模和复杂性。在这种背景下,AI特别是深度学习算法,凭借其强大的模式识别和预测能力,正在为生物信息学带来前所未有的机遇和挑战。

2024-07-17 00:08:02 3244 1

原创 优化算法:梯度下降 (Gradient Descent) 原理与代码实例讲解

在机器学习、深度学习以及数据科学等领域中,我们经常会遇到需要优化某个目标函数或者代价函数的情况。这些函数通常是高维、非线性和非凸的,很难直接求解出解析解。因此,我们需要一种迭代算法来逐步逼近最优解。梯度下降(Gradient Descent)算法就是这样一种广泛使用的优化算法。梯度下降算法的核心思想是:沿着目标函数的负梯度方向更新参数,使目标函数值不断减小,最终收敛到局部最小值。初始化参数的值,通常是随机初始化。计算目标函数在当前参数值处的梯度。根据梯度的方向和学习率,更新参数的值。

2024-06-28 00:52:59 1710 2

原创 零样本学习 (ZeroShot Learning)【系列文章】

关键词:零样本学习, 机器学习, 人工智能, 知识迁移, 语义表示随着深度学习技术的快速发展,机器学习模型在许多任务中取得了显著的成功。然而,这些模型通常需要大量的标注数据来进行训练。然而,在实际应用中,获取充足的标注数据往往是困难且昂贵的。特别是在一些长尾分布的任务中,某些类别的数据可能极为稀少甚至不存在,这使得传统的监督学习方法难以奏效。为了解决这一问题,零样本学习(ZeroShot Learning, ZSL)应运而生。零样本学习的目标是在没有见过某些类别训练样本的情况下,仍能对这些类别进行识别和分类

2024-06-28 00:50:24 1304

原创 【AI大数据与人工智能】Spark SQL 原理与代码实例讲解

在大数据时代,数据处理和分析成为了一项关键的任务。Apache Spark 作为一个开源的大数据处理框架,凭借其高效的内存计算能力和通用性,已经成为了大数据领域中最受欢迎的技术之一。Spark SQL 作为 Spark 的一个重要模块,为结构化数据处理提供了强大的功能支持。Spark SQL 不仅支持传统的 SQL 查询,还引入了更高级的分析功能,如数据流处理、机器学习等。它能够高效地处理大规模数据集,并提供了与 Spark 其他模块(如 Spark Streaming、MLlib 等)的无缝集成。

2024-06-06 01:20:20 1654 2

原创 AI原生应用领域对话状态跟踪:提升自然语言处理能力

在AI原生应用中,我们常常希望计算机能像人类一样和我们自然地对话。对话状态跟踪就是实现这一目标的关键技术之一。它的目的是记录和理解对话的历史信息,从而让计算机在对话过程中做出更合理的回应。本文的范围涵盖了对话状态跟踪的基本概念、算法原理、实际应用等方面,帮助大家全面了解这一技术。本文首先会介绍对话状态跟踪的核心概念,用简单易懂的方式解释相关术语。接着会讲解核心算法原理,并给出具体的操作步骤和代码示例。然后通过项目实战,展示如何在实际应用中实现对话状态跟踪。之后会探讨它的实际应用场景、未来发展趋势与挑战。

2026-01-30 23:39:24 327

原创 大数据领域:数据复制的高效策略解析

我是李阳,某互联网公司大数据架构师,专注于数据传输与实时计算领域6年。我喜欢用通俗易懂的方式讲解复杂技术,曾在知乎、CSDN发表多篇大数据技术文章,累计阅读量超过100万。我的公众号“大数据之路”会定期分享最新的技术实践,欢迎关注。最后:数据复制是大数据的“地基”,但它的价值往往被忽略。希望本文能帮你重新认识数据复制,让你的数据流动更聪明、更高效。如果你有任何问题,欢迎在评论区留言——我们一起讨论!

2026-01-30 22:43:08 241

原创 从ETL到数据标准化:构建高质量数据管道的秘诀

本文旨在帮助读者理解从ETL(提取、转换、加载)到数据标准化的完整数据处理流程,掌握构建高质量数据管道的核心技术和最佳实践。我们将覆盖从数据采集到最终使用的全生命周期管理。本文将首先介绍ETL和数据标准化的基本概念,然后深入探讨它们之间的关系和协作方式。接着我们会详细讲解核心算法和实现步骤,提供实际代码示例,最后讨论应用场景和未来趋势。ETL:提取(Extract)、转换(Transform)、加载(Load)的缩写,描述数据从源系统到目标系统的移动和转换过程数据标准化。

2026-01-30 20:35:15 437

原创 大数据领域数据科学的设备维护数据分析

想象一下:一家汽车制造厂的关键生产线突然停机,维修需要48小时,这期间每天损失2000万元——这样的场景在传统工业中并不罕见。本文的目标,就是教会您如何用大数据和数据科学技术,把这种“黑天鹅”事件变成“可预测、可干预”的日常操作。我们将覆盖从传感器数据采集到剩余寿命预测的全流程,重点讲解数据科学在其中的核心作用。本文将按照“概念-原理-实战-应用”的逻辑展开:先通过生活故事理解核心概念,再用数学和代码拆解技术原理,接着用实战案例演示全流程,最后展望未来趋势。

2026-01-30 19:43:52 737

原创 AI原生应用领域反馈循环:提升应用性能的秘诀

本文旨在全面解析AI原生应用中的反馈循环机制,涵盖从概念理解到实际实现的完整知识体系。我们将重点讨论反馈循环的设计原理、技术实现和优化策略,帮助读者掌握构建高效AI应用的关键技术。文章将从反馈循环的基本概念入手,逐步深入到技术实现细节,最后通过实际案例展示反馈循环在AI应用中的具体应用。我们还将探讨相关工具资源和未来发展趋势。AI原生应用:以人工智能为核心功能设计的应用程序,其核心价值依赖于AI模型的性能表现。反馈循环:系统通过收集用户交互数据,分析并用于改进自身性能的持续优化过程。模型再训练。

2026-01-30 02:35:55 172

原创 技术管理系统:团队建设平台

在当今科技飞速发展的时代,技术团队的规模和复杂度不断增加,有效的团队建设和管理变得至关重要。技术管理系统中的团队建设平台旨在解决团队协作、沟通、人才培养等方面的问题,提高团队的整体效率和创新能力。本文的范围涵盖了团队建设平台的各个方面,包括其核心概念、算法原理、实际应用等,旨在为读者提供一个全面深入的了解。本文将按照以下结构进行阐述:首先介绍团队建设平台的背景和相关术语;接着深入探讨核心概念与联系,包括其原理和架构;然后详细讲解核心算法原理和具体操作步骤,并结合Python代码进行说明;

2026-01-30 01:44:49 190

原创 从数据量增长到用户激增:AI应用架构师的容量规划应对方案

AI应用的容量规划是业务需求、技术现状、成本约束的平衡艺术。理解AI应用的特殊性:计算密集、数据驱动、动态性强、实时性要求高;采用闭环框架:需求分析-现状评估-容量建模-方案设计-实施验证-持续迭代;结合模型优化和资源扩展:模型优化是成本最优的方案,资源扩展是最后的手段;持续监控和迭代:容量规划不是一次性的,而是持续的过程。对于AI应用架构师来说,容量规划不是"救火",而是"防火"。只有提前布局,才能应对数据量增长和用户激增的挑战,确保AI应用的性能和可用性。

2026-01-29 23:42:01 682

原创 大数据领域Hadoop的云部署实践

本文将以AWS(亚马逊云)和阿里云搭建云环境基础(VPC、安全组、子网);规划Hadoop集群节点(Master/Slave/ZooKeeper);手动/自动化部署Hadoop集群;配置高可用(HA)集群,避免单点故障;验证集群可用性,以及常见问题排查;云环境下的性能优化与成本控制。本文从云环境搭建→节点规划→Hadoop安装配置→高可用集群搭建→弹性扩容→性能优化,完整覆盖了Hadoop云部署的全流程。云环境的基础是VPC和安全组,确保网络隔离;

2026-01-29 22:45:44 507

原创 探讨大数据领域存算分离的未来趋势

本文旨在帮助技术从业者、企业决策者理解存算分离的技术逻辑、实际价值及未来潜力,覆盖从基础概念到行业应用的全链路分析,重点解答“为什么需要存算分离?”“它如何解决传统架构痛点?”“未来会如何发展?”三大核心问题。本文将从生活化案例引入存算分离概念,对比传统“存算一体”架构的不足;通过技术原理解析、数学模型验证、实战案例展示其优势;最后结合行业动态,展望云原生、湖仓一体等未来趋势。存算一体:计算资源(如服务器)与存储资源(如硬盘)物理绑定,计算时需直接访问本地存储。存算分离。

2026-01-29 20:42:57 608

原创 人工智能助力下的自动化代码合并

在现代软件开发过程中,团队成员通常会并行开发不同的功能模块,这就需要频繁地进行代码合并操作。然而,代码合并过程中常常会遇到冲突,手动解决这些冲突不仅耗时费力,还容易引入新的错误。本文的目的在于介绍如何利用人工智能技术实现自动化代码合并,提高代码合并的效率和准确性。范围涵盖了从核心概念的阐述到实际项目中的应用,以及相关工具和资源的推荐。本文将按照以下结构进行组织:首先介绍核心概念与联系,包括相关概念的原理和架构;接着讲解核心算法原理和具体操作步骤,并给出 Python 代码示例;

2026-01-29 19:51:49 318

原创 数据网格(Data Mesh)与数据虚拟化技术的结合应用

本文旨在帮助数据架构师、工程师和决策者理解如何将数据网格和数据虚拟化这两种看似不同但高度互补的技术结合起来,以解决现代企业面临的数据管理挑战。我们将覆盖从理论到实践的全方位内容。核心概念解释:数据网格和数据虚拟化两种技术的互补性分析结合架构设计实施案例和最佳实践未来展望数据网格(Data Mesh):一种分布式数据架构方法,将数据视为产品,强调领域所有权、自助服务基础设施和联合治理。数据虚拟化(Data Virtualization)

2026-01-29 02:59:02 466

原创 数据网格(Data Mesh)与数据虚拟化技术的结合应用

本文旨在帮助数据架构师、工程师和决策者理解如何将数据网格和数据虚拟化这两种看似不同但高度互补的技术结合起来,以解决现代企业面临的数据管理挑战。我们将覆盖从理论到实践的全方位内容。核心概念解释:数据网格和数据虚拟化两种技术的互补性分析结合架构设计实施案例和最佳实践未来展望数据网格(Data Mesh):一种分布式数据架构方法,将数据视为产品,强调领域所有权、自助服务基础设施和联合治理。数据虚拟化(Data Virtualization)

2026-01-29 02:09:19 524

原创 深度探索!提示工程架构师解读AI提示系统商业化路径变革

在讲商业化之前,我们需要先理清几个核心概念——否则后面的内容会像“空中楼阁”。

2026-01-28 00:12:52 496

原创 大数据领域Zookeeper的安全策略制定与实施

ACL权限控制:限制“谁能对哪个节点做什么”;SASL身份认证:验证客户端的真实身份;SSL/TLS加密:加密通信数据,防止窃听和篡改;审计与监控:记录操作日志,实时监控异常事件。身份可信:只有合法的客户端能连接;通信安全:数据传输不会被窃听;权限可控:每个用户只能访问自己的节点;操作可查:出了问题能快速定位责任人。

2026-01-27 23:21:42 295

原创 AI辅助的公司治理评分系统与改善建议

公司治理是现代企业管理中至关重要的环节,它关系到企业的长期稳定发展和投资者利益保护。传统的公司治理评估方法主要依赖人工审核和静态指标分析,存在效率低下、主观性强、难以实时更新等问题。本文旨在探讨如何利用人工智能技术构建一个动态、客观、高效的公司治理评分系统,并基于评分结果提供针对性的改善建议。公司治理评估的理论基础AI评分系统的架构设计核心算法和数学模型实际应用案例分析系统实现的技术细节首先介绍公司治理和AI评分系统的背景知识然后深入讲解系统的核心概念和架构。

2026-01-27 22:25:26 446

原创 程序员的职业转型与自我提升

在当今科技飞速发展的时代,软件行业变化日新月异。新技术不断涌现,如人工智能、大数据、区块链等,这对程序员的技能和职业发展提出了新的挑战和机遇。本文的目的在于为程序员提供全面的指导,帮助他们在面对职业发展瓶颈或寻求新的职业方向时,能够顺利实现职业转型和自我提升。范围涵盖了从基础概念到实际操作,从理论分析到项目实践,以及未来发展趋势等多个方面。本文将按照以下结构进行阐述:首先介绍相关背景知识,让读者了解文章的目的和适用范围。接着讲解核心概念,明确职业转型和自我提升的原理和架构。

2026-01-27 21:34:22 358

原创 电商行业的数据分析工具及其最佳实践

本文旨在为电商从业者提供一套完整的数据分析工具和实践框架。电商数据生态系统构建关键业务指标(KPI)设计用户行为分析技术销售预测与库存优化个性化推荐系统营销效果评估首先介绍电商数据分析的基础概念和核心指标然后深入分析数据处理流程和技术架构接着详细讲解关键算法和数学模型随后通过实际案例展示应用方法最后探讨未来发展趋势和挑战转化率(Conversion Rate): 完成目标动作(如购买)的访客占总访客的比例平均订单价值(AOV): 总收入除以订单数量得到的平均值。

2026-01-27 20:43:11 320

原创 大模型+HR:智能助手架构设计的创新实践

张三,资深软件架构师,拥有15年HR技术领域经验,曾主导多个大模型+HR智能助手项目,擅长将复杂技术转化为可落地的业务解决方案。

2026-01-27 19:51:59 529

原创 AI应用架构师指南:构建AI驱动数学研究的方法论体系

AI驱动数学研究是指通过AI技术辅助数学研究的全流程问题提出:用AI生成新猜想(如“所有偶数都可以表示为两个素数之和”的推广);证明探索:用AI生成证明路径(如分步骤推导“费马小定理”);严谨验证:用AI工具验证证明的正确性(如用Lean 4检查形式化证明);成果推广:用AI将成果应用到其他领域(如用代数几何中的定理优化机器学习模型)。本文提出了一套AI驱动数学研究的方法论体系,涵盖“问题建模→AI推理→严谨验证→知识沉淀”四大核心环节。

2026-01-27 01:52:38 325

原创 数据降维实战:用Python实现大数据降维

你有没有遇到过这样的问题?手里拿着一份电商用户行为数据,包含300个特征(浏览次数、购买金额、点击路径…),用K-Means聚类时,计算时间长到喝两杯咖啡都没出结果;训练图像分类模型时,输入是28×28=784维的手写数字,模型总爱“过拟合”小噪声;想把高维数据画成散点图看分布,却发现“三维以上没法可视化”……

2026-01-27 00:57:50 538

原创 AI应用架构师必备:智能库存优化系统核心指标体系设计与监控实践

库存管理是供应链的“心脏”——既要保证“供血充足”(不缺货),又要避免“血液淤积”(库存积压)。AI技术的介入让库存优化从“经验驱动”转向“数据驱动”,但90%的AI库存系统失败,根源在于指标体系混乱:要么指标太技术化(比如只看模型准确率),要么太业务化(比如只看缺货率),导致AI决策与业务目标脱节。本文将以“AI应用架构师”的视角,一步步拆解智能库存优化系统的核心指标体系设计逻辑:从业务目标对齐到分层指标设计,从技术实现到监控闭环,并用“冰箱管理”“体检表”等生活化比喻简化复杂概念。

2026-01-26 23:54:59 330

原创 数据质量评估:清洗前后的量化对比方法

每个维度对应可计算的量化指标比如电商数据中的“订单金额=数量×单价”规则,需要自定义指标计算符合率;再比如社交数据中的“用户性别”值域一致性(只能是“男/女/未知”)。数据清洗不是“体力活”,而是“技术活”。其效果不能靠“感觉”,必须用量化指标来衡量。定义维度:明确数据质量的5大核心维度(完整、唯一、准确、一致、及时);设计指标:为每个维度设计可量化的指标(比如缺失值比例、异常值比例);评估前置:清洗前先计算指标,明确问题;针对性清洗:根据评估结果制定清洗计划;评估后置。

2026-01-26 22:58:43 337

原创 大数据架构 _ 如何设计一个支持数据版本控制的系统?

将版本控制融入数据 pipeline:每个ETL任务、实时流任务完成后,自动生成版本(比如用Airflow的记录详细的元数据:不仅要记录版本号,还要记录「为什么变更」「谁变更的」「关联的任务」(比如用Apache Atlas记录lineage);定期备份元数据:元数据比数据更重要,要定期备份到异地存储(比如S3的跨区域复制);测试版本回溯功能:定期验证能否恢复历史版本(比如每月做一次「数据回溯演练」);结合数据质量检查。

2026-01-26 21:57:22 265

原创 大数据领域数据架构的图数据库应用探索

随着互联网、物联网的发展,数据不再是孤立的“数字孤岛”,而是呈现出高度关联的特征:社交平台中用户与好友的关系链、金融交易中的资金流转网络、生物基因的蛋白质交互……这些数据的核心价值,恰恰隐藏在“关系”里。本文将聚焦“图数据库”这一专为关联数据设计的数据库类型,覆盖其核心原理、技术优势、典型应用场景,以及与传统数据架构的协同方法,帮助读者理解何时、为何、如何使用图数据库。本文将按照“概念→原理→实战→应用”的逻辑展开:先通过生活案例引入图数据库;再对比传统数据库,解释其核心优势;

2026-01-26 21:01:05 485

原创 大数据领域数据建模的最佳实践分享

在大数据时代,企业每天产生TB级别的用户点击、交易记录、设备传感器数据,但这些原始数据就像散落的拼图——单独看是杂乱无章的点,只有通过数据建模这双“巧手”,才能拼出用户行为画像、业务健康度、市场趋势等完整图景。本文聚焦企业级大数据建模,覆盖从需求调研到模型落地的全生命周期,重点解决“如何让模型既满足业务需求,又具备长期扩展性”的核心问题。

2026-01-26 20:09:56 408

原创 AI应用架构师必学:AI模型市场的“权限管理”设计逻辑

参与角色 → 权限维度 → 具体操作 → 核心目标(提供者/消费者/平台/监管)→(模型/数据/服务/版本)→(推理/微调/下载/部署)→(安全/合规/商业化/体验)用户属性:身份(企业/个人)、资质(医疗机构/教育机构)、付费等级(免费/付费/企业);资源属性:模型类型(文本/图像/医疗)、版本(v1.0/v2.0)、知识产权类型(开源/商业);场景属性:使用场景(推理/微调/部署/分享)、终端类型(Web/API/SDK)、地理位置(国内/国外);约束属性。

2026-01-26 19:13:40 422

原创 AI在社交网络分析和舆情监测中的应用

随着社交媒体的爆炸式增长,每天产生的用户生成内容(UGC)已达到前所未有的规模。本文旨在系统地介绍如何利用人工智能技术,特别是机器学习和深度学习,从海量社交媒体数据中提取有价值的信息,进行有效的社交网络分析和舆情监测。社交网络数据的获取与预处理社交网络结构分析技术舆情内容的情感与主题分析实时监测与预警系统构建应用案例分析第2章介绍核心概念和技术架构第3-4章深入算法原理和数学模型第5章提供完整项目实战案例第6-7章探讨应用场景和工具资源第8章展望未来发展趋势。

2026-01-26 02:20:51 546

原创 巴菲特的投资策略与市场适应

本文章旨在全面剖析巴菲特的投资策略,深入研究其如何在复杂多变的市场环境中保持有效性和适应性。通过对巴菲特投资理念、方法的详细解读,结合实际案例和理论分析,帮助投资者更好地理解和应用这些策略,同时为金融领域的研究者提供有价值的参考。研究范围涵盖了巴菲特投资策略的各个方面,包括选股标准、估值方法、风险管理等,以及这些策略在不同市场阶段和行业中的表现。本文共分为十个部分。第一部分为背景介绍,阐述了文章的目的、预期读者和文档结构,同时对相关术语进行了定义和解释。

2026-01-26 01:24:41 476

原创 AI应用架构师学习效率低?试试终身学习系统架构,帮你告别无效努力

学了很多大模型、工程化的知识,却在项目中不知道怎么用?每天刷论文、看课程,知识像碎片一样散在脑子里,想用的时候找不到?技术更新太快,刚学会TensorFlow 2.x,又要学PyTorch Lightning,永远赶不上节奏?这些问题的根源不是你不够努力,而是没有建立一套适配AI领域的“终身学习系统”。本文将用“搭建AI系统”的思路,帮你设计一个**“输入-处理-输出-反馈-迭代”的闭环学习架构**,把碎片化知识变成可复用的“知识资产”,让学习与工作联动,彻底告别“学了没用”的无效努力。

2026-01-26 00:28:18 585

原创 数据挖掘在广告精准投放中的应用

传统广告投放像“撒网捕鱼”:品牌商在电视、广告牌上投入巨额费用,但90%的广告可能被不感兴趣的用户看到(数据来源:eMarketer)。而数据挖掘技术的出现,让广告投放进入“精准狙击”时代——通过分析用户行为数据,预测用户需求,只给“对的人”看“对的广告”。本文将覆盖数据挖掘在广告投放中的核心技术(用户画像、推荐算法、CTR预测等)、实战方法及未来趋势。

2026-01-25 23:32:04 285

原创 AI Agent的情感计算在客户服务中的应用

本文旨在系统性地介绍情感计算技术在AI Agent客户服务中的应用。我们将涵盖从基础理论到实际实现的完整技术栈,包括情感识别、情感生成和情感交互等关键技术环节。本文特别关注如何将这些技术整合到实际的客户服务系统中,以提升用户体验和服务效率。首先介绍情感计算的基本概念和技术背景然后深入探讨核心算法和数学模型接着通过实际案例展示具体实现最后讨论应用场景和未来发展方向情感计算(Affective Computing):研究和开发能够识别、解释、处理和模拟人类情感的系统和技术AI Agent。

2026-01-25 22:35:48 397

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除