- 博客(6543)
- 收藏
- 关注
原创 LLM Based Multi-Agent System 基于 AI 大模型的多智能体系统
LLM-based Multi-Agent System 基于 AI 大模型的多智能体系统> 关键词:大语言模型、多智能体系统、人工智能、协作、自主性、分布式智能、任务分解
2024-08-27 01:21:59
1706
1
原创 AI人工智能核心算法原理与代码实例讲解:机器学习流程
在当今数据时代,海量数据的产生和积累为机器学习的发展奠定了基础。传统的基于规则的编程方法越来越无法满足复杂问题的需求,因此我们需要一种新的范式来处理这些数据并从中获取有价值的见解。机器学习作为一种数据驱动的方法,通过从数据中自动捕捉模式,为解决各种现实问题提供了强大的工具。决策树是一种常用的监督学习算法,可以用于回归和分类任务。它通过构建一个树状决策模型,根据特征值对实例进行递归分割,最终将实例划分到不同的叶节点,从而完成预测。
2024-08-20 01:14:53
839
2
原创 多模态大模型:技术原理与实战 多模态大模型的效果评估
近年来,随着深度学习的快速发展,人工智能领域取得了突破性进展。其中,大规模预训练模型的出现,如 GPT-3、BERT 等,极大地推动了自然语言处理(NLP)领域的发展。然而,传统的单模态模型只能处理单一类型的数据,例如文本或图像,无法充分利用现实世界中丰富多样的信息。为了解决这个问题,多模态学习应运而生,旨在通过整合多种模态的信息来提升模型的理解和生成能力。多模态大模型作为多模态学习的最新研究方向,近年来受到了学术界和工业界的广泛关注。
2024-08-12 00:26:06
933
1
原创 Python深度学习实践:分布式训练大型模型的策略
深度学习的起源可以追溯到20世纪40年代,当时神经科学家开始尝试用数学模型模拟人脑神经元的运作方式。然而,由于计算能力的限制和数据量的不足,早期的神经网络模型非常简单,无法解决复杂的实际问题。直到20世纪80年代,随着计算机硬件的快速发展和反向传播算法的提出,深度学习才开始逐渐兴起。2006年,Hinton等人提出了深度置信网络(DBN),并在图像识别任务上取得了突破性进展,标志着深度学习的复兴。分布式训练是训练大型深度学习模型的关键技术,可以显著加速训练过程、扩展模型规模、提高资源利用率。
2024-08-05 00:23:07
556
1
原创 基于用户购物行为的商品推荐算法研究与实现
随着电子商务的蓬勃发展,用户在电商平台上购物的频率越来越高,商品种类也越来越丰富。为了提升用户体验,提高用户粘性和平台盈利能力,电商平台迫切需要一种能够根据用户的购物行为,精准推荐用户感兴趣商品的推荐系统。深度学习: 将深度学习技术应用于商品推荐算法,可以提高推荐效果。强化学习: 将强化学习技术应用于商品推荐算法,可以实现动态调整推荐策略。多模态推荐: 结合多种数据模态,例如文本、图像、视频等,进行商品推荐。
2024-08-05 00:20:01
943
原创 AI人工智能深度学习算法:在生物信息学中的应用
在过去的十年里,人工智能(AI)和深度学习技术在各个领域都取得了突破性的进展。其中,生物信息学作为一个交叉学科,正在经历一场由AI驱动的革命。生物信息学结合了生物学、计算机科学和统计学,旨在解析和理解海量的生物数据。随着高通量测序技术的发展和生物大数据的积累,传统的数据分析方法已经难以应对日益增长的数据规模和复杂性。在这种背景下,AI特别是深度学习算法,凭借其强大的模式识别和预测能力,正在为生物信息学带来前所未有的机遇和挑战。
2024-07-17 00:08:02
3211
1
原创 优化算法:梯度下降 (Gradient Descent) 原理与代码实例讲解
在机器学习、深度学习以及数据科学等领域中,我们经常会遇到需要优化某个目标函数或者代价函数的情况。这些函数通常是高维、非线性和非凸的,很难直接求解出解析解。因此,我们需要一种迭代算法来逐步逼近最优解。梯度下降(Gradient Descent)算法就是这样一种广泛使用的优化算法。梯度下降算法的核心思想是:沿着目标函数的负梯度方向更新参数,使目标函数值不断减小,最终收敛到局部最小值。初始化参数的值,通常是随机初始化。计算目标函数在当前参数值处的梯度。根据梯度的方向和学习率,更新参数的值。
2024-06-28 00:52:59
1688
2
原创 零样本学习 (ZeroShot Learning)【系列文章】
关键词:零样本学习, 机器学习, 人工智能, 知识迁移, 语义表示随着深度学习技术的快速发展,机器学习模型在许多任务中取得了显著的成功。然而,这些模型通常需要大量的标注数据来进行训练。然而,在实际应用中,获取充足的标注数据往往是困难且昂贵的。特别是在一些长尾分布的任务中,某些类别的数据可能极为稀少甚至不存在,这使得传统的监督学习方法难以奏效。为了解决这一问题,零样本学习(ZeroShot Learning, ZSL)应运而生。零样本学习的目标是在没有见过某些类别训练样本的情况下,仍能对这些类别进行识别和分类
2024-06-28 00:50:24
1291
原创 【AI大数据与人工智能】Spark SQL 原理与代码实例讲解
在大数据时代,数据处理和分析成为了一项关键的任务。Apache Spark 作为一个开源的大数据处理框架,凭借其高效的内存计算能力和通用性,已经成为了大数据领域中最受欢迎的技术之一。Spark SQL 作为 Spark 的一个重要模块,为结构化数据处理提供了强大的功能支持。Spark SQL 不仅支持传统的 SQL 查询,还引入了更高级的分析功能,如数据流处理、机器学习等。它能够高效地处理大规模数据集,并提供了与 Spark 其他模块(如 Spark Streaming、MLlib 等)的无缝集成。
2024-06-06 01:20:20
1641
2
原创 语言模型在复杂社会网络动态演化与文化传播预测中的应用
本文旨在系统性地介绍语言模型在复杂社会网络分析中的应用,特别是针对社会网络动态演化与文化传播预测这一特定领域。我们将涵盖从理论基础到实际应用的完整知识体系,包括相关算法、数学模型和编程实现。文章首先介绍基本概念和理论基础,然后深入探讨算法原理和数学模型,接着通过实际案例展示应用方法,最后讨论未来发展方向和挑战。语言模型:基于统计或神经网络方法,对语言序列的概率分布进行建模的算法社会网络:由社会实体(如个人或组织)及其间关系构成的网络结构文化传播:文化特征(如观念、行为、信息)在社会网络中的扩散过程。
2026-01-06 20:17:34
216
原创 大数据领域数据建模的图书馆大数据资源管理
图书馆大数据资源管理中的数据建模面临多方面的问题。首先是数据多样性问题,图书馆数据包括结构化的书目数据、半结构化的元数据(如数字文档的描述信息)以及非结构化的用户评论、社交媒体反馈等。如何对这些不同结构的数据进行统一建模是一大挑战。其次,数据的海量性使得传统的数据建模和处理方法难以满足需求,需要考虑高效的数据存储和查询机制。再者,数据的时效性也很关键,例如实时的用户行为数据需要及时处理和建模,以支持实时的服务优化。此外,图书馆还需要确保数据建模能够支持不同的业务目标,如资源采购决策、个性化服务推荐等。
2026-01-06 19:21:18
264
原创 大数据领域主数据管理的系统搭建指南
在企业数字化转型中,“数据打架”的现象屡见不鲜:销售系统里的“客户张三”手机号是1381234,财务系统里却是1395678;库存系统显示某商品库存100件,采购系统却标着80件……这些矛盾数据的背后,是企业“数据孤岛”的顽疾。本文将聚焦主数据管理(Master Data Management, MDM),从技术原理到落地实践,完整覆盖“认知-设计-搭建-应用”全流程,帮助企业搭建一套能解决数据不一致、不完整、不可共享问题的主数据管理系统。
2026-01-06 02:18:17
442
原创 大数据领域数据架构的实时处理方案
随着物联网、移动应用与业务中台的普及,企业每秒产生的实时数据量呈指数级增长。传统批处理架构(如Hadoop MapReduce)在处理秒级以上延迟的离线分析场景中表现优异,但在实时风控、实时推荐、实时监控等场景下,无法满足亚秒级响应的业务需求。本文聚焦实时数据架构的核心技术栈,包括消息队列、流处理引擎、状态管理、容错机制等关键模块,提供从技术原理到工程实践的全维度指导。核心概念:定义实时处理关键术语,对比技术架构差异技术原理:解析消息队列、流处理引擎的核心算法与数学模型实战指南。
2026-01-06 01:16:54
736
原创 大数据领域数据服务的发展趋势与挑战
随着企业数字化转型进入深水区,数据服务作为连接数据资产与业务场景的核心枢纽,其技术架构与实现范式正经历深刻变革。本文聚焦大数据领域数据服务的技术演进路径,涵盖从传统数据仓库到现代数据平台的架构迭代,重点分析湖仓一体、数据网格、实时数据服务等前沿技术方向,揭示数据服务在支撑业务创新、驱动智能决策中的核心价值与关键挑战。背景部分建立技术演进的宏观认知框架核心概念解析架构范式与技术关联算法与模型揭示关键技术的数学本质实战案例演示完整技术栈的工程实现应用场景展现行业落地的价值转化路径。
2026-01-06 00:15:31
451
原创 干货大放送!AI应用架构师谈AI模型持续优化
模型的初始训练只是开始,持续优化才是保持AI应用价值的关键。模型持续优化(Continuous Model Optimization, CMO)是指在模型的全生命周期(训练→部署→运行→退役)中,通过数据反馈、性能监控、流程自动化等手段,不断提升模型的准确性、效率和业务价值的过程。它的核心是**“闭环”**:fill:#333;important;important;fill:none;color:#333;color:#333;important;fill:none;fill:#333;
2026-01-05 23:13:54
510
原创 大数据数据复制工具比较:Kafka vs Flume vs Sqoop
在大数据时代,数据的复制和传输是非常重要的环节。不同的业务场景需要不同的数据复制工具,了解 Kafka、Flume 和 Sqoop 这三款工具的特点和适用场景,能够让我们在处理数据时更加得心应手。本文将详细比较这三款工具,范围涵盖它们的基本概念、工作原理、代码实现以及实际应用场景等方面。本文首先会介绍相关的术语,然后引入故事来引出核心概念,接着详细解释核心概念及其之间的关系,给出原理和架构的示意图及流程图。
2026-01-05 22:17:53
709
原创 全球股市估值与可持续农业垂直种植技术的关系
本研究的主要目的是揭示全球股市估值与可持续农业垂直种植技术之间的相互关系。通过对全球股市数据的分析,结合可持续农业垂直种植技术的发展现状和趋势,探究该技术如何影响股市估值,以及股市估值的变化如何反映技术的发展前景。研究范围涵盖全球主要股票市场,以及与可持续农业垂直种植技术相关的各类企业,包括技术研发、设备制造、农业生产等领域。本文将按照以下结构展开:首先介绍核心概念与联系,明确全球股市估值和可持续农业垂直种植技术的定义和相互关系;接着阐述核心算法原理和具体操作步骤,运用 Python 代码进行详细说明;
2026-01-05 21:26:45
673
原创 如何将集体好奇心融入产品定价策略
在当今竞争激烈的市场环境中,产品定价策略对于企业的生存和发展至关重要。传统的定价策略往往基于成本、市场需求和竞争状况等因素,但随着消费者心理和市场动态的不断变化,如何吸引消费者的注意力并激发他们的购买欲望成为了企业面临的新挑战。集体好奇心作为一种强大的心理驱动力,可以有效地吸引消费者的关注,提高产品的吸引力和市场竞争力。本文的目的是探讨如何将集体好奇心融入产品定价策略,为企业提供一种创新的定价思路和方法。
2026-01-05 20:35:35
402
原创 大数据领域数据架构的实时数据更新架构
想象一下,如果您点的外卖APP显示"预计30分钟送达",但实际骑手位置3小时才更新一次——这种体验会有多糟糕?在数字经济时代,“实时性"已经从"加分项"变成"刚需”。本文将聚焦大数据领域的实时数据更新架构,覆盖从数据产生到应用的全链路技术细节,帮助技术从业者理解如何构建高可靠、低延迟的实时数据系统。本文将按照"生活类比→核心概念→架构拆解→实战案例→未来趋势"的逻辑展开,通过"快递分拣中心"的故事贯穿始终,确保每个技术点都能找到对应的生活映射。实时数据流处理。
2026-01-05 19:39:04
504
原创 大数据建模中的MLOps:机器学习模型的持续交付
随着企业对数据驱动决策的依赖加深,机器学习模型在业务场景中的应用日益广泛。传统机器学习开发流程存在模型训练与部署脱节、环境配置复杂、版本管理混乱、监控机制缺失等问题,导致模型交付周期长、维护成本高。MLOps(Machine Learning Operations)通过整合DevOps理念与机器学习工程实践,构建覆盖数据处理、模型训练、验证、部署到监控的全生命周期管理体系,实现模型的持续集成(CI)和持续交付(CD)。
2026-01-05 02:36:02
525
原创 数据建模在大数据能源管理中的实践
在当今能源需求不断增长、能源供应面临挑战的背景下,能源管理的重要性日益凸显。大数据技术的发展为能源管理带来了新的机遇,通过对海量能源数据的分析和挖掘,可以实现更高效、智能的能源管理。数据建模作为大数据分析的核心环节,能够帮助我们从复杂的能源数据中提取有价值的信息,建立合理的模型来预测能源消耗、优化能源分配等。本文的目的在于探讨数据建模在大数据能源管理中的具体实践方法和应用。范围涵盖了从数据建模的基本概念和原理,到在能源管理中的实际应用案例,以及相关工具和资源的推荐。
2026-01-05 01:40:01
324
原创 从技术到业务:AI应用架构师用企业成熟度模型的转型指南
想象一下,在一个繁华都市的金融中心,有两家规模相当的银行。银行A一直以来在技术上投入巨大,率先采用了最先进的AI技术来优化其风险评估系统。他们拥有顶尖的AI工程师,模型的准确率在技术指标上堪称完美。然而,银行A却发现,这些先进的技术并没有像预期那样显著提升业务绩效,贷款违约率依旧居高不下,客户满意度也没有明显改善。与此同时,银行B虽然在AI技术的投入上相对保守,但他们注重技术与业务的结合。通过深入了解业务流程,他们利用相对简单的AI模型,却成功降低了贷款违约率,提高了客户满意度,业务蒸蒸日上。
2026-01-05 00:48:54
370
原创 AI Agent的跨域知识迁移与整合
本文旨在系统性地阐述AI Agent在不同领域间进行知识迁移与整合的技术原理、实现方法和应用场景。跨域知识迁移的基本原理和算法知识整合的技术实现路径实际应用中的挑战和解决方案未来发展趋势和研究方向本文的范围包括但不限于迁移学习、多任务学习、联邦学习等技术在AI Agent知识迁移中的应用。第2章介绍核心概念和基本原理第3章详细讲解核心算法和实现步骤第4章建立数学模型并进行理论分析第5章通过实际案例展示技术应用第6章探讨实际应用场景第7章推荐相关工具和资源。
2026-01-04 23:52:37
622
原创 实战案例:我用Agentic智能体优化了企业客服流程,架构师需要的细节
响应慢:客户通过电话、微信、APP等多渠道接入,客服需要切换多个系统(订单、物流、CRM)查询信息,平均响应时间超过30秒;重复劳动多:80%的问题是重复的(比如“快递什么时候到?”“怎么退换货?”),客服每天要重复回答几百次;数据分散:客户对话数据、订单数据、投诉数据分散在不同系统,无法统一分析,导致问题无法根因定位。这些痛点的本质是**“流程碎片化”和“人的效率瓶颈”**——客服作为“中间节点”,需要手动串联各个系统,而人的精力和速度有限。Agentic智能体。
2026-01-04 23:01:28
496
原创 Doris在广告点击流分析中的大数据处理方案
在数字广告领域,广告点击流数据作为用户行为的核心载体,每天产生PB级规模的数据量。这些数据包含用户触点轨迹、广告曝光/点击事件、设备信息、地理位置等关键维度,是广告效果评估、用户行为分析、流量反作弊的重要依据。传统数据处理方案在面对实时性要求高、查询维度复杂、并发量激增的场景时,常出现延迟高、扩展性差、分析效率低等问题。本文聚焦Apache Doris(以下简称Doris)在广告点击流场景中的技术落地,涵盖数据管道设计、分布式存储建模、高性能查询优化、实时分析场景实践等核心内容。
2026-01-04 22:05:13
823
原创 金融市场系统性风险传导模拟与预警
金融市场作为现代经济的核心组成部分,其稳定性对于整个经济体系的健康发展至关重要。系统性风险是指金融体系中可能引发全局性危机的风险,一旦爆发,将对经济造成巨大的冲击。本研究的目的在于通过模拟金融市场系统性风险的传导过程,建立有效的预警机制,帮助监管机构、金融机构和投资者更好地识别、评估和应对系统性风险。研究范围涵盖了多种金融市场,包括股票市场、债券市场、外汇市场等,以及不同类型的金融机构,如银行、证券、保险等。同时,考虑了宏观经济因素、政策因素和市场情绪等对系统性风险传导的影响。本文共分为十个部分。
2026-01-04 21:08:56
917
原创 如何评估公司的内在价值
评估公司内在价值是投资决策、并购交易和战略规划的核心环节。本文旨在提供一套系统、实用的公司估值方法论,涵盖从基础理论到高级应用的完整知识体系。我们将重点探讨适用于不同行业、不同发展阶段企业的估值技术,并分析这些方法的适用场景和局限性。本文采用循序渐进的结构,首先介绍估值的基本概念和原则,然后深入探讨各种估值方法和技术,接着通过实际案例展示应用过程,最后讨论高级主题和未来发展趋势。每个部分都包含理论解释和实际应用指导。内在价值(Intrinsic Value)
2026-01-04 20:12:24
933
原创 AI应用架构师实战:数字资产管理平台的CI_CD架构
数字资产管理平台(Digital Asset Management, DAM)是AI应用的“数字仓库”——它存储着AI系统依赖的数据(原材料)模型(半成品/成品)代码(工具)和配置(说明书)。但AI场景下的自动化交付(CI/CD)与传统软件截然不同:传统CI/CD是“代码→编译→部署”的线性流程,而AI CI/CD需要整合数据版本、模型训练、特征工程等特有环节,还要保证“数据-代码-模型”的可重复性。本文将从实战视角如何解决AI场景下“数据版本混乱、模型训练不可重复、部署协同困难”的核心痛点?
2026-01-04 19:16:26
538
原创 动态推理任务适应中持续学习的创新策略
本文旨在全面剖析持续学习(Continual Learning)领域的最新进展,特别是在动态推理任务适应方面的创新策略。我们将重点关注如何在不断变化的环境中,使机器学习模型能够持续获取新知识而不遗忘旧知识。研究范围包括但不限于:持续学习的理论基础、算法实现、应用场景以及未来发展方向。本文首先介绍持续学习的基本概念和背景知识,然后深入探讨核心算法原理和数学模型。接着通过实际代码示例展示实现细节,分析应用场景,推荐相关工具资源,最后讨论未来发展趋势和挑战。文章采用由浅入深的结构,确保不同背景的读者都能有所收获。
2026-01-04 02:23:39
300
原创 电商运营中的客户需求分析与管理
在当今竞争激烈的电商市场中,了解并满足客户需求是电商企业取得成功的关键。本文的目的在于系统地阐述电商运营中客户需求分析与管理的方法和策略,帮助电商企业更好地把握客户需求,提高客户满意度和忠诚度,从而提升企业的竞争力和市场份额。文章的范围涵盖了客户需求分析的各个环节,包括数据收集、数据分析、需求挖掘等,以及客户需求管理的策略制定、执行和监控等方面。同时,还结合实际案例,介绍了如何将客户需求分析与管理应用到电商运营的各个场景中。背景介绍:介绍文章的目的、范围、预期读者和文档结构。核心概念与联系。
2026-01-04 01:22:14
788
原创 探索 Hive 在大数据可视化中的应用潜力
在大数据时代,可视化是将海量数据转化为可操作洞察的关键手段,但数据预处理的复杂度与大规模数据的查询效率始终是可视化的核心挑战。Apache Hive作为基于Hadoop的分布式数据仓库工具,以其SQL兼容性大规模数据处理能力和成熟的生态集成,成为连接数据存储与可视化工具的重要桥梁。本文从概念基础理论框架架构设计实现机制到实际应用,系统分析Hive在大数据可视化中的应用潜力:通过Hive的数据建模(分区、分桶)、查询优化(CBO、执行引擎选择)与生态集成(Tableau、Power BI等),解决可视化中的。
2026-01-04 00:31:05
244
原创 数据中台中的数据权限与行级安全控制
在当今数字化时代,企业积累了海量的数据,数据中台作为企业数据整合、共享和价值挖掘的核心平台应运而生。数据中台汇聚了企业各业务系统的数据,为企业的决策和业务发展提供有力支持。然而,随着数据的集中管理和共享,数据安全问题日益突出。数据权限与行级安全控制的目的在于确保只有授权的用户能够访问特定的数据,并且对不同用户的访问范围进行精确控制,以保护企业数据的安全性和隐私性。本文的范围涵盖了数据中台环境下数据权限与行级安全控制的各个方面,包括核心概念、算法原理、实际应用、开发实践以及未来发展趋势等。
2026-01-03 23:29:42
920
原创 提升AI模型在跨领域迁移学习任务中的表现
跨领域迁移学习旨在将一个领域(源领域)中学习到的知识应用到另一个不同但相关的领域(目标领域)中,以提高目标领域的学习效率和模型性能。本文的目的是深入探讨如何提升AI模型在跨领域迁移学习任务中的表现,涵盖了从理论原理到实际应用的多个方面,包括核心概念、算法原理、数学模型、项目实战以及实际应用场景等。本文将按照以下结构展开:首先介绍相关背景知识,包括目的、读者和术语;接着阐述核心概念与联系,用示意图和流程图展示;然后详细讲解核心算法原理和操作步骤,给出Python代码;再介绍数学模型和公式并举例;
2026-01-03 22:33:27
780
原创 ClickHouse分布式表原理:大数据分片存储与查询
我是一名资深大数据工程师,专注于ClickHouse优化和分布式架构设计。拥有5年以上大数据开发经验,曾为多家电商、金融公司提供ClickHouse解决方案。欢迎关注我的博客(),一起探讨大数据技术!留言互动:你在使用ClickHouse分布式表时遇到过什么问题?欢迎在评论区分享,我会一一解答!
2026-01-03 21:32:04
936
原创 如何应对AI带来的职业挑战
本文章的目的在于为个人和组织提供全面且实用的指导,以应对AI技术发展所带来的职业挑战。我们将涵盖多个领域,包括但不限于传统行业、新兴科技行业,分析不同职业在AI浪潮下所面临的机遇和威胁,并探讨可行的应对策略。从技能提升、职业转型到组织层面的战略调整,本文将为读者提供一系列的思路和方法,帮助他们在AI时代保持竞争力。本文将按照以下结构展开:首先介绍AI对职业影响的背景信息,包括目的、预期读者和文档结构概述等;
2026-01-03 20:40:55
701
原创 深度学习在语音界面测试中的应用
随着语音助手(如Siri、Alexa、Google Assistant)和语音交互应用的普及,语音界面的质量保证变得至关重要。系统介绍深度学习在语音界面测试中的应用方法提供可落地的技术方案和代码实现分析当前技术局限性和未来发展方向研究范围涵盖语音识别(ASR)、自然语言理解(NLU)和语音合成(TTS)三大核心模块的测试技术。首先介绍基础概念和技术背景然后深入核心算法和数学模型接着通过实际案例展示应用方法最后讨论行业应用和发展趋势: 自动语音识别,将语音转换为文本的技术。
2026-01-03 19:39:35
601
原创 大数据领域数据架构的核心要点解析
如果把数据比作数字时代的石油,那么数据架构就是“炼油厂”——它将杂乱无章的原始数据(原油)转化为可用于决策的 insights(汽油、柴油)。但随着数据量从“TB级”跃升至“PB级”,数据类型从“结构化表格”扩展到“日志、图像、音频”,传统数据架构(如数据仓库)已无法满足需求。本文将从大数据架构的进化史组织数据以匹配需求数据仓库:精品超市的“精选逻辑”数据湖:大型仓库的“包容逻辑”湖仓一体:打通“精选”与“包容”的最优解数据建模:用“维度-事实”构建数据的“地图”
2026-01-03 02:41:38
284
原创 深空网络优化:提示工程在星际通信中的突破
在浩瀚的宇宙中,人类探索的脚步越走越远。从月球到火星,再到更遥远的星系,深空探测活动日益频繁。而星际通信作为深空探测的关键环节,面临着诸多挑战,如信号衰减、延迟大、带宽有限等。本文的目的就是探讨如何利用提示工程这一新兴技术,对深空网络进行优化,突破星际通信的瓶颈,提高通信的效率和可靠性。范围涵盖了提示工程的基本原理、在星际通信中的应用场景、相关算法和数学模型,以及实际项目案例分析。本文首先介绍了深空网络和提示工程的核心概念,以及它们之间的联系。接着详细阐述了提示工程在星际通信中应用的算法原理和数学模型。
2026-01-03 01:40:16
322
原创 大数据ETL中的数据质量提升工具与方法
传统ETL将数据质量简化为"准确性",但在大数据场景下,我们需要从信息熵的视角重新定义:数据质量是数据承载信息的能力与预期用途的匹配度。QDID;UI(D;U)ID;U是数据D与使用场景U的互信息HUH(U)HU是场景的信息熵diDd_i(D)diD是第i个质量维度的缺陷程度w。
2026-01-03 00:38:35
938
原创 深度剖析:自主代理AI的提示策略设计方法论(提示工程架构师进阶篇)
自主代理AI(Autonomous AI Agent)是指能在开放环境中,以长期目标为导向,自主感知、决策、行动并学习的AI系统。目标自主:有明确的长期目标(比如“提升用户满意度”),而非依赖人类的即时指令;感知自主:能主动获取环境信息(比如读取用户历史对话、查询系统状态);决策自主:能根据目标和感知结果,自主选择行动方案(比如“先查快递状态,再解释延迟原因”);学习自主:能从行动结果中学习,优化后续决策(比如“上次推荐红色产品用户喜欢,这次优先推荐”)。以终为始。
2026-01-02 23:42:20
546
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅