今天给大家带来Recsys2022上阿里中稿的一篇文章。商品的属性如价格,评分等对于用户在电商场景下的行为决策起着较为重要的作用,但过往的推荐系统大都关注用户历史行为的建模,而对于商品属性的变化很少关注。因此,论文从商品属性动态演化的角度出发,通过建模商品不同属性下的属性画像和交互用户画像和当前商品属性以及目标用户的匹配度,来提升CTR等下游任务的效果,一起来看一下。
1、背景
从YoutubeDNN、DIN等开始,CTR预估模型的研究大都关注于对于用户兴趣的建模,即通过用户的历史交互行为来建模用户兴趣表示,对商品属性的变化却很少关注。电商场景下,商品的属性变化是十分频繁的,如商品的价格会随着不同的节日(京东618,双11等)或者商家的操作频繁变动,当同一商品处于不同价位时,会吸引不同优惠敏感度用户的关注。如下图所示,当目标商品是奢侈包包时,高收入用户(对商品价格不敏感)无论在何种价位下都会产生兴趣;而对于价格十分敏感的用户来说,只有当商品有较大的折扣力度时才会吸引用户的点击。
因此,从商品属性动态演化的角度出发,论文提出了Core Attributes Evolution Network (CAEN),通过