标题:《TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou》
链接:https://arxiv.org/pdf/2302.02352.pdf
今天给大家分享的是快手近期发表的终身行为序列建模上的工作,当前工业界主流的方法大都是两阶段的方法,如SIM、ETA和SDIM,这些两阶段的方法面临的主要问题是阶段一致性问题,即一阶段筛选出的行为,并不一定是二阶段所认为的高度相关的行为。如果一阶段不能精确的筛选行为,那么无论二阶段如何设计良好的attention机制,其效果也只能是次优的。论文从这个角度出发,提出了两阶段一致的终身行为序列建模方法,称为TWIN(TWo-stage Interest Network)。接下来,一起了解一下。
1、背景
从用户的行为序列中准确建模用户的兴趣,已经成为CTR预估中的一个重要研究方向。其中一条重要的研究主线就是如何不断扩充用户的行为序列长度,从长度几十到几百,再到几千最终到终身行为序列建模。用户的终身行为序列能够更有效捕捉用户的长期兴趣,但也带来了计算耗时问题。因此业界大多数终身行为序列建模的方法采取一种两阶段的范式:GSU和ESU。
General Search Unit (GSU):从终身行为序列中快速挑选一小部分历史行为,如SIM-Hard按照简单的规则方式,挑选与