推荐系统遇上深度学习(一四三)-[快手]一致性终身用户行为建模方法TWIN

文章介绍了快手的TWIN模型,这是一种解决终身用户行为序列建模中两阶段一致性问题的方法。TWIN通过特征拆分和线性映射优化Multi-HeadTargetAttention的计算效率,提高从长期行为序列中筛选相关行为的准确性,从而增强用户兴趣的建模。实验结果显示,TWIN在AUC指标和一致性上相比基础模型有显著提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fa98b787b57856148138f0c58bdeb491.jpeg

标题:《TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou》
链接:https://arxiv.org/pdf/2302.02352.pdf

今天给大家分享的是快手近期发表的终身行为序列建模上的工作,当前工业界主流的方法大都是两阶段的方法,如SIM、ETA和SDIM,这些两阶段的方法面临的主要问题是阶段一致性问题,即一阶段筛选出的行为,并不一定是二阶段所认为的高度相关的行为。如果一阶段不能精确的筛选行为,那么无论二阶段如何设计良好的attention机制,其效果也只能是次优的。论文从这个角度出发,提出了两阶段一致的终身行为序列建模方法,称为TWIN(TWo-stage Interest Network)。接下来,一起了解一下。

1、背景

从用户的行为序列中准确建模用户的兴趣,已经成为CTR预估中的一个重要研究方向。其中一条重要的研究主线就是如何不断扩充用户的行为序列长度,从长度几十到几百,再到几千最终到终身行为序列建模。用户的终身行为序列能够更有效捕捉用户的长期兴趣,但也带来了计算耗时问题。因此业界大多数终身行为序列建模的方法采取一种两阶段的范式:GSU和ESU。

General Search Unit (GSU):从终身行为序列中快速挑选一小部分历史行为,如SIM-Hard按照简单的规则方式,挑选与

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值