- 博客(3)
- 收藏
- 关注
原创 【算法】 ML与最小二乘
最小二乘法是一种基础优化算法,广泛应用于线性回归问题。它通过最小化误差平方和(MSE)来估计模型参数,当损失函数为凸函数时可求得全局最优解。线性回归需满足线性关系、残差独立同分布等假设。MSE因对离群值敏感而被常用,其优化目标为均值最小化。正则化方法如L1/L2可控制模型复杂度。最小二乘法通过求导解析求解,计算效率高但要求设计矩阵满秩。相比梯度下降法,它能保证唯一最优解而不陷入局部最优。代码实现主要依赖矩阵运算,适用于一元和多元线性回归场景。
2024-04-12 16:01:51
854
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅