欢迎使用CSDN-markdown编辑器

术语

Lebesgue integral : 勒贝格积分
标准内积定义:X=(X1,X2,X3), Y=(Y1,Y2,Y3)
X,Y=X1Y1+X2Y2+X3Y3
,V : 定义在V空间上的向量的内积

矢量长度 ||A|| = a2+b2=(A,A)=A,A — 用内积表示 矢量的长度
矢量的范:就是矢量长度 ||A|| = a2+b2=A,A,2

小波与傅里叶分析基础 笔记

傅里叶变换的缺点是:它的构造块是无始无终的周期性正弦波和余弦波。该方法适合滤除或压缩那些具有近似周期性的波动信号,而对那些具有显著局部特性的信号,正弦波和余弦波就无能为力了。
小波适合模拟短的突变信号,粗略地看,小波就像仅仅持续了一两个周期的波动,仅仅在非常有限的一段区间内有非零值,而不是像正弦波和余弦波那样无始无终。小波可以沿时间轴前后平移,也可以按照比例伸展和压缩以获取高频和低频小波。构造好的小波函数可以像傅里叶级数那样用于滤波和压缩信号。基本方法是:给定一信号,首先把它展开成小波的平移和伸缩之和,然后把欲舍弃项的系数去掉或进行适当的修改。
不用正弦波和余弦波作为小波构造块的原因:为了实现把一个信号进行分解展开的有效算法,构造块应该满足一些基本性质,其中之一就是正交性,对正弦波函数就是:
\frac{1}{\pi}\int_0^{2\pi}{sin(nt)sin(mt)dt}=  
\left{\begin{matrix}
0 & n\neq m\\
1 & n=m
\end{matrix}\right.

但在构造小波的时候就遇到了困难,如何保证小波函数在平移和延展后也是正交的?如何有快速的算法?
尺度函数和小波函数

ϕ(t)={100t1t=othersψ(t)=1100t1212t1t=others

在Haar小波中, ϕ(t) ψ(t) 在[0,1]上正交, ϕ(t) 是尺度函数, ψ(t) 是小波函数.

基是向量空间中的一组向量,向量空间中的所有向量都可以通过基中的向量经过线性组合而得到。

第0章

L2 空间和 l2 空间

L2 空间

这个空间是描述内积的,也就是矢量的长度。
L2 空间 是矢量的集合。对于一个信号 f(t),它表示了t时刻的信号密度。t在区间【a,b】之间变化。这些矢量是指 在 atb 范围内可积的。可积的意思是 baf(t)dt< 。对于大多数物理信号,这个条件都是成立的:因为在一段时间内,信号的总能量总是有限的。基本上只要不要在 [a,b] 范围内出现 10 的情况就可以满足条件。所以,若 a=0, b=1,函数列 1,t,t2,t3 是满足条件,属于 L2[0,1] ;但是 f(t)=1t 不属于 L2[0,1] ,因为 10(1t)2dt=

两个信号的内积是两个信号的距离。f(t)和g(t)的距离(对于定义在复平面上的矢量,在计算时要用其中一个的共轭矢量来计算。 L2[0,1] 上的 (fN,gN)RN=Nj=0f(tj)g(tj)=Nj=0f(t/N)g(t/N)
为了避免这个值越来越大,可以给他取平均值
1N(fN,gN)RN=1NNj=0f(t/N)g(t/N)
当N趋向 时(分的份数无穷多),就可以得到f,g两个函数在 L2([a,b]) 上的内积定义

f,gL2=baf(t)g(t)dt

这个应该是两个信号之间围起来的面积。

l2 空间

l2 空间是指离散化以后的 L2 空间,所以很自然地,对于离散信号X,Y,它 l2 上的(X,Y)内积定义是

X,Yl2=π=x(π)y(π)

Schwaz 不等式和三角不等式

||(X,Y)||=||X||||Y||cos(θ)||X||||Y||

正交

正交的定义

X,Y 是V空间中的向量, XY=0=||X||||Y||cos(θ) ,则 X,Y 正交
傅里叶变换构造块正交性的证明:
f(t) = sin(t) 和 g(t) = cos(t) 在 [π,π] 上正交,证明如下:

f(t),g(t)=ππsin(t)cos(t)dt=12ππsin(2t)dt=14cos(2t)ππ=14(cos(2π)cos(2π))=0

0.6 线性算子及伴随算子

0.6.1 线性算子

线性算子就是线性映射
线性映射的定义:
矢量空间V与矢量空间W的线性算子(映射)是一个函数T:V->W,它满足:
T(αv+βw)=αT(v)+βT(w) , 其中 v,wVα,βC
如果V和W是有限维的,那么T常常用给定一组基下的矩阵来表示。令 {v1,...,vn} 是V的基, {w1,...,wm} 是W的基.对于每一个 1jn,T(vj)W , 它能在 w1,...,wm 下展开:

T(vj)=i=1maijwiTvjW

这里 aij 是复数。对于任意矢量 v=xjvjV , T(v)的值可以通过下面的公式来计算:
T(v)=T(j=1nxjvj)=j=1nxjT(vj)=i=1mj=1m(aijxj)wi=i=1mciwi

wi 的系数 ci=nj=1aijxj , 它在下面的矩阵积中由第i行确定
a11am1a1namnx1xn

0.6.2 伴随算子

若V和W是内积空间,那么有时需要通过把算子T转移到内积的另一边来计算 T(v),wW (T是线性算子,把V空间中的向量v映射成W空间中的向量,再来和w求其在W空间中的内积)。还句话说,我们想把W空间中的向量映射到V空间后,再和v求内积:

T(v),wW=v,T(w)V

这里, T:WV , 是线性算子 T:VV 的伴随算子。在内积空间中的每个有界线性算子都有伴随算子。

0.7 最小二乘和线性预测编码

第一章 傅里叶级数

第二章 傅里叶变换

第三章 离散傅里叶变换

第四章 Haar小波变化

4.1 小波的由来

小波最先在工程中被地球物理学家用来分析通过爆炸方法产生的人造地震数据,以便找石油,探矿等。通过分析可以得到地表下的岩层的“图像”。

4.2 Haar小波

4.2.1 Haar尺度函数

有两个函数在小波分析中起着非常重要的作用,即尺幅函数 ϕ 和小波函数 ψ ,这两个函数产生了一组可以用于分解和重构信号的函数族。在构造该函数族中, ϕ 被称为父函数, ψ 被称为母函数。

4.2.2 Haar尺度函数的基本特性

Haar尺度函数定义为

ϕ(x)={100x<1

ϕ(xk) ϕ 的图形基本一样,只不过向右平移了k个单位。
V0 是所有形如 kZakϕ(xk) 的函数组成的空间,实际上 V0 就是 ϕ(x) 平移,缩放以后对原来函数的模拟,用很多阶梯函数去模拟原来的函数,每个阶梯的宽度是1。
函数集 2j2ϕ(2jxk);jZ Vj 的一个标准正交基 , 12j 就是宽度,k是移动的位置。系数 2j2 的存在是由于 (ϕ(2jx))2dx=12j

设j是一般非负整数,j级阶梯函数空间表示为 Vj ,它是由函数集

{,ϕ(2jx+1),ϕ(2jx),ϕ(2jx1),ϕ(2jx2),}

在实数域中张成的
V0V1V2V3Vj1VjVj+1
Vj 包含所有分辨率为 2j 下的相关信息。随着j的增加,分辨得更精细。 VjVj+1 意味着随着分辨率提高,不会丢失任何信息。该包含关系也说明了为什么 Vj 是以 ϕ(2jx) 形式而不是以 ϕ(ax) 形式定义的。假如定义 V2 ϕ(3xj) 而不是 ϕ(4xj) ,那么 V2 将不包含 V1 ,因为1/2的倍数不在1/3的倍数集合中.

4.2.4 Haar 小波

Haar小波函数为:

ψ(x)=ϕ(2x)ϕ(2x1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值