算法时间复杂度分析
1.算法的提出
(1)算法的概念
算法是计算机处理信息的本质,因为计算机程序本质上是一个算法来告诉计算机确切的步骤来执行一个指定的任务。一般地,当算法在处理信息时,会从输入设备或数据的存储地址读取数据,把结果写入输出设备或某个存储地址供以后再调用。
对于算法而言,实现的语言并不重要,重要的是思想。
(2)算法的五大特性
输入: 算法具有0个或多个输入
输出: 算法至少有1个或多个输出
有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成
确定性:算法中的每一步都有确定的含义,不会出现二义性
可行性:算法的每一步都是可行的,也就是说每一步都能够执行有限的次数完成
2.算法效率衡量
(1)执行时间反应算法效率
我们假定计算机执行算法每一个基本操作的时间是固定的一个时间单位,那么有多少个基本操作就代表会花费多少时间单位。算然对于不同的机器环境而言,确切的单位时间是不同的,但是对于算法进行多少个基本操作(即花费多少时间单位)在规模数量级上却是相同的,由此可以忽略机器环境的影响而客观的反应算法的时间效率。
对于算法的时间效率,我们可以用“大O记法”来表示
(2)如何理解“大O记法”
对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。
(3)分析算法时,存在几种可能的考虑:
算法完成工作最少需要多少基本操作,即最优时间复杂度
算法完成工作最多需要多少基本操作,即最坏时间复杂度
算法完成工作平均需要多少基本操作,即平均时间复杂度
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。我们主要关注算法的最坏情况,亦即最坏时间复杂度。
(4)时间复杂度的几条基本计算规则:
- 基本操作,即只有常数项,认为其时间复杂度为O(1)
- 顺序结构,时间复杂度按加法进行计算
- 循环结构,时间复杂度按乘法进行计算
- 分支结构,时间复杂度取最大值
- 判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
- 在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
3.算法分析
注意:这两段代码每层循环的数量级为n
4.常见时间复杂度之间的关系
5.数据结构
我们如何用Python中的类型来保存一个班的学生信息? 如果想要快速的通过学生姓名获取其信息呢?
实际上当我们在思考这个问题的时候,我们已经用到了数据结构。列表和字典都可以存储一个班的学生信息,但是想要在列表中获取一名同学的信息时,就要遍历这个列表,其时间复杂度为O(n),而使用字典存储时,可将学生姓名作为字典的键,学生信息作为值,进而查询时不需要遍历便可快速获取到学生信息,其时间复杂度为O(1)。
我们为了解决问题,需要将数据保存下来,然后根据数据的存储方式来设计算法实现进行处理,那么数据的存储方式不同就会导致需要不同的算法进行处理。我们希望算法解决问题的效率越快越好,于是我们就需要考虑数据究竟如何保存的问题,这就是数据结构。
1.Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。
而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。
2.程序 = 数据结构 + 算法
算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体
3.抽象数据类型(Abstract Data Type)
抽象数据类型(ADT)即把数据类型和数据类型上的运算捆在一起,进行封装。
最常用的数据运算有五种:
插入
删除
修改
查找
排序