Hadoop是一个开发和运行处理大规模数据的软件平台,是Apache的一个用java语言实现的开源分布式系统框架,
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
实现在大量计算机组成的集群中对海量数据进行分布式计算。
它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。
用于存放PB、TB数量级的文件,每份文件可以有多个副本,所以HDFS是一个具有高冗余、高容错的文件系统。
hdfs结构:
名称节点(NameNode):
分为两部分:
1.块儿信息:文件位置映射信息,帮助快速查找某个文件在那个数据节点上。
2.辅助名称节点(SecondaryNameNode)通过镜像文件和变更日志备份NameNode原数据,如果NameNode挂了,可以通过这些数据进行恢复。
若干个数据节点(DataNode):
用于存放文件及文件的副本,最小的存储单元是块儿,默认大小为64M.
所有的DataNode会定期向NameNode发送心跳。如果NameNode长时间没有收到某个节点发送的心跳,
则认为他挂掉了。
所有资源的统一管理和分配,NodeManager管理Hadoop集群中单个计算节点。
hadoop2的yarn设计减少了jobTracker的 资源消耗,减少了hadoop1中发生单点故障的风险。我们还可以在
yarn平台上运行spark和storm作业,充分利用资源。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
实现在大量计算机组成的集群中对海量数据进行分布式计算。
它的目的是从单一的服务器到上千台机器的扩展,每一个台机都可以提供本地计算和存储。
Hadoop框架中最核心设计就是:MapReduce和HDFS。MapReduce提供了对数据的计算,HDFS提供了海量数据的存储。
用于存放PB、TB数量级的文件,每份文件可以有多个副本,所以HDFS是一个具有高冗余、高容错的文件系统。
hdfs结构:
名称节点(NameNode):
分为两部分:
1.块儿信息:文件位置映射信息,帮助快速查找某个文件在那个数据节点上。
2.辅助名称节点(SecondaryNameNode)通过镜像文件和变更日志备份NameNode原数据,如果NameNode挂了,可以通过这些数据进行恢复。
若干个数据节点(DataNode):
用于存放文件及文件的副本,最小的存储单元是块儿,默认大小为64M.
所有的DataNode会定期向NameNode发送心跳。如果NameNode长时间没有收到某个节点发送的心跳,
则认为他挂掉了。
所有资源的统一管理和分配,NodeManager管理Hadoop集群中单个计算节点。
hadoop2的yarn设计减少了jobTracker的 资源消耗,减少了hadoop1中发生单点故障的风险。我们还可以在
yarn平台上运行spark和storm作业,充分利用资源。