ZOJ Problem Set - 1005 Jugs

ZOJ Problem Set - 1005
Jugs

Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge

In the movie "Die Hard 3", Bruce Willis and Samuel L. Jackson were confronted with the following puzzle. They were given a 3-gallon jug and a 5-gallon jug and were asked to fill the 5-gallon jug with exactly 4 gallons. This problem generalizes that puzzle.

You have two jugs, A and B, and an infinite supply of water. There are three types of actions that you can use: (1) you can fill a jug, (2) you can empty a jug, and (3) you can pour from one jug to the other. Pouring from one jug to the other stops when the first jug is empty or the second jug is full, whichever comes first. For example, if A has 5 gallons and B has 6 gallons and a capacity of 8, then pouring from A to B leaves B full and 3 gallons in A.

A problem is given by a triple (Ca,Cb,N), where Ca and Cb are the capacities of the jugs A and B, respectively, and N is the goal. A solution is a sequence of steps that leaves exactly N gallons in jug B. The possible steps are

fill A
fill B
empty A
empty B
pour A B
pour B A
success

where "pour A B" means "pour the contents of jug A into jug B", and "success" means that the goal has been accomplished.

You may assume that the input you are given does have a solution.

Input

Input to your program consists of a series of input lines each defining one puzzle. Input for each puzzle is a single line of three positive integers: Ca, Cb, and N. Ca and Cb are the capacities of jugs A and B, and N is the goal. You can assume 0 < Ca <= Cb and N <= Cb <=1000 and that A and B are relatively prime to one another.

Output

Output from your program will consist of a series of instructions from the list of the potential output lines which will result in either of the jugs containing exactly N gallons of water. The last line of output for each puzzle should be the line "success". Output lines start in column 1 and there should be no empty lines nor any trailing spaces.

Sample Input
3 5 4
5 7 3

Sample Output
fill B
pour B A
empty A
pour B A
fill B
pour B A
success
fill A
pour A B
fill A
pour A B
empty B
pour A B
success
// 不小心内存开的太大出现 段错误 Segmentation Fault
调整内存就对了
#include <iostream>
#include <algorithm>

using namespace std ; 

#define maxn 1000
#define inf 99999999
int a , b , n ; 
int path[maxn] , result[maxn] ; 
bool visit[maxn][maxn] , flag;  
int re_step ; 

void DFS(int ca , int cb ,int step){
    if(step >= re_step){
        return;
    }
    if(cb == n){
        if(step < re_step){
            flag = true ; 
            re_step = step ; 
            for(int i=0 ; i<re_step ; i++){
                result[i] = path[i] ; 
            }
        }
        return;
    }

    // fill A 
    if(ca < a){
        if(visit[a][cb] == false){
            visit[a][cb] = true ; 
            path[step] = 1 ; 
            DFS(a , cb , step+1) ; 
            visit[a][cb] = false ; 
        }
        
    }
    // fill B
    if(cb < b){
        if(visit[ca][b] == false){
            visit[ca][b] = true ; 
            path[step] = 2 ; 
            DFS(ca , b , step+1) ;
            visit[ca][b] = false ;      
        }
        
    }
    // empty A
    if(ca > 0){
        if(visit[0][cb] == false){
            visit[0][cb] = true ; 
            path[step] = 3 ; 
            DFS(0 , cb , step+1) ;
            visit[0][cb] = false ; 
        }
         
    }
    // empty B
    if(cb > 0){
        if(visit[ca][0] == false){
            visit[ca][0] = true ; 
            path[step] = 4 ; 
            DFS(ca , 0 , step+1) ;     
            visit[ca][0] = false ; 
        }
        
    }
    // pour A B
    if(ca > 0 && cb < b){
        int num = min(ca , b-cb) ; 
        if(visit[ca-num][cb+num] == false){
            visit[ca-num][cb+num] = true ; 
            path[step] = 5 ; 
            DFS(ca-num , cb+num , step+1) ; 
            visit[ca-num][cb+num] = false ; 
        }
    }
    // pour B A
    if(ca < a && cb > 0){
        int num = min(a-ca , cb) ; 
        if(visit[ca+num][cb-num] == false){
            visit[ca+num][cb-num] = true ; 
            path[step]= 6 ; 
            DFS(ca+num , cb-num , step+1) ; 
            visit[ca+num][cb-num] = false ;  
        }
    }
    return;
}



int main(){

    while(cin >> a >> b >> n ){
        flag = false ; 
        re_step = inf ; 

        DFS(0 , 0 , 0) ; 

        if(flag == true){
            for(int i=0 ; i<re_step ; i++){
                if(result[i] == 1){
                    cout << "fill A" << endl ; 
                }
                if(result[i] == 2){
                    cout << "fill B" << endl ; 
                }
                if(result[i] == 3){
                    cout << "empty A" << endl ; 
                }
                if(result[i] == 4){
                    cout << "empty B" << endl ; 
                }
                if(result[i] == 5){
                    cout << "pour A B" << endl ; 
                }
                if(result[i] == 6){
                    cout << "pour B A" << endl ; 
                }
            }
            cout << "success" << endl ; 
        }else{
            cout << "No" << endl ; 
        }
    }
    return 0 ; 
}

 



转载于:https://www.cnblogs.com/yi-ye-zhi-qiu/p/9141826.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值