GAN(生成对抗网络)
abril4416
这个作者很懒,什么都没留下…
展开
-
数学角度的GAN的改进方法
从数学角度看GAN的改进参考文献:李宏毅老师对抗生成网络公开课原创 2020-03-16 10:04:55 · 447 阅读 · 0 评论 -
Conditional GAN(条件对抗生成网络)原理及代码解读
从基本问题引入CGAN对于text-to-image 的问题,传统的神经网络的方法将文本信息输入网络,输出图像。明显的一个问题,比如单词train 可能对应多张图像,那么最终生成的图像将是这么多张图像的堆叠。引入GAN,此时discriminator做的工作不仅仅是判断生成是否为真,同时还要判别输出与要求是否匹配。算法流程大致如下:从训练集中采样{(c1,x1),(c2,x2)…(cm,xm...原创 2020-03-15 12:03:51 · 2790 阅读 · 0 评论 -
从散度(divergence)角度理解GAN
GAN和散度(divergence)的联系根据之前的定义(可以参考之前的文章:GAN(对抗生成网络)的数学原理及基本算法),discriminator采用最大似然的方法评估生成和原样本的差异性的本质是衡量两者的JS散度:V=−2log2+2JSD(Pdata∣∣PG)V = -2log2 + 2JSD(P_{data}||P_G)V=−2log2+2JSD(Pdata∣∣PG)但是其实衡量...原创 2020-03-14 16:51:46 · 1445 阅读 · 0 评论 -
GAN(对抗生成网络)的数学原理及基本算法
从structured learning看GANMachine Learning (ML) 本质上是寻找一个函数f:X→Yf:X\to Yf:X→Y,通过网络来近似这个函数。Structured Learning (SL) 输出相对于ML更加复杂,可能是图、树、序列……通常ML的问题,每个类别都会有一些样本,但是SL则不会——输出可能是输入从来没见过的东西。在GAN 之前,auto-encod...原创 2020-03-14 12:23:32 · 3005 阅读 · 3 评论