9. SpringCloud+Docker+RabbitMQ+Elasticsearch+Sentinel分布式微服务学习笔记

微服务的学习笔记

SpringCloud

  1. SpringCloud版本说明

https://github.com/alibaba/spring-cloud-alibaba/wiki/%E7%89%88%E6%9C%AC%E8%AF%B4%E6%98%8E

  1. SpringCloud版本对照表

https://github.com/spring-cloud/spring-cloud-release/wiki/Spring-Cloud-2020.0-Release-Notes

1.认识微服务

随着互联网行业的发展,对服务的要求也越来越高,服务架构也从单体架构逐渐演变为现在流行的微服务架构。这些架构之间有怎样的差别呢?

1.1.单体架构

单体架构:将业务的所有功能集中在一个项目中开发,打成一个包部署。

在这里插入图片描述

单体架构的优缺点如下:

优点:

  • 架构简单
  • 部署成本低

缺点:

  • 耦合度高(维护困难、升级困难)

1.2.分布式架构

分布式架构:根据业务功能对系统做拆分,每个业务功能模块作为独立项目开发,称为一个服务。

分布式架构的优缺点:

优点:

  • 降低服务耦合
  • 有利于服务升级和拓展

缺点:

  • 服务调用关系错综复杂

分布式架构虽然降低了服务耦合,但是服务拆分时也有很多问题需要思考:

  • 服务拆分的粒度如何界定?
  • 服务之间如何调用?
  • 服务的调用关系如何管理?

人们需要制定一套行之有效的标准来约束分布式架构。

1.3.微服务

微服务的架构特征:

  • 单一职责:微服务拆分粒度更小,每一个服务都对应唯一的业务能力,做到单一职责
  • 自治:团队独立、技术独立、数据独立,独立部署和交付
  • 面向服务:服务提供统一标准的接口,与语言和技术无关
  • 隔离性强:服务调用做好隔离、容错、降级,避免出现级联问题

在这里插入图片描述

微服务的上述特性其实是在给分布式架构制定一个标准,进一步降低服务之间的耦合度,提供服务的独立性和灵活性。做到高内聚,低耦合。

因此,可以认为微服务是一种经过良好架构设计的分布式架构方案

但方案该怎么落地?选用什么样的技术栈?全球的互联网公司都在积极尝试自己的微服务落地方案。

其中在Java领域最引人注目的就是SpringCloud提供的方案了。

1.4.SpringCloud

SpringCloud是目前国内使用最广泛的微服务框架。官网地址:https://spring.io/projects/spring-cloud

SpringCloud集成了各种微服务功能组件,并基于SpringBoot实现了这些组件的自动装配,从而提供了良好的开箱即用体验。

其中常见的组件包括:

在这里插入图片描述

另外,SpringCloud底层是依赖于SpringBoot的,并且有版本的兼容关系,如下:

在这里插入图片描述

我们课堂学习的版本是 Hoxton.SR10,因此对应的SpringBoot版本是2.3.x版本。

1.5.总结

  • 单体架构:简单方便,高度耦合,扩展性差,适合小型项目。例如:学生管理系统

  • 分布式架构:松耦合,扩展性好,但架构复杂,难度大。适合大型互联网项目,例如:京东、淘宝

  • 微服务:一种良好的分布式架构方案

    ①优点:拆分粒度更小、服务更独立、耦合度更低

    ②缺点:架构非常复杂,运维、监控、部署难度提高

  • SpringCloud是微服务架构的一站式解决方案,集成了各种优秀微服务功能组件

2.服务拆分和远程调用

任何分布式架构都离不开服务的拆分,微服务也是一样。

2.1.服务拆分原则

这里我总结了微服务拆分时的几个原则:

  • 不同微服务,不要重复开发相同业务
  • 微服务数据独立,不要访问其它微服务的数据库
  • 微服务可以将自己的业务暴露为接口,供其它微服务调用

在这里插入图片描述

2.2.服务拆分示例

以课前资料中的微服务cloud-demo为例,其结构如下:

在这里插入图片描述

cloud-demo:父工程,管理依赖

  • order-service:订单微服务,负责订单相关业务
  • user-service:用户微服务,负责用户相关业务

要求:

  • 订单微服务和用户微服务都必须有各自的数据库,相互独立
  • 订单服务和用户服务都对外暴露Restful的接口
  • 订单服务如果需要查询用户信息,只能调用用户服务的Restful接口,不能查询用户数据库

2.2.1.导入Sql语句

首先,将课前资料提供的cloud-order.sqlcloud-user.sql导入到mysql中:

在这里插入图片描述

cloud-order表中持有cloud-user表中的id字段。

2.2.2.导入demo工程

用IDEA导入课前资料提供的Demo:

在这里插入图片描述

项目结构如下:

在这里插入图片描述

导入后,会在IDEA右下角出现弹窗:
在这里插入图片描述

点击弹窗,然后按下图选择:

在这里插入图片描述

会出现这样的菜单:

在这里插入图片描述

配置下项目使用的JDK:

在这里插入图片描述

2.3.实现远程调用案例

在order-service服务中,有一个根据id查询订单的接口:

在这里插入图片描述

根据id查询订单,返回值是Order对象,如图:

在这里插入图片描述

其中的user为null

在user-service中有一个根据id查询用户的接口:

在这里插入图片描述

查询的结果如图:

在这里插入图片描述

2.3.1.案例需求:

修改order-service中的根据id查询订单业务,要求在查询订单的同时,根据订单中包含的userId查询出用户信息,一起返回。

在这里插入图片描述

因此,我们需要在order-service中 向user-service发起一个http的请求,调用http://localhost:8081/user/{userId}这个接口。

大概的步骤是这样的:

  • 注册一个RestTemplate的实例到Spring容器
  • 修改order-service服务中的OrderService类中的queryOrderById方法,根据Order对象中的userId查询User
  • 将查询的User填充到Order对象,一起返回

2.3.2.注册RestTemplate

首先,我们在order-service服务中的OrderApplication启动类中,注册RestTemplate实例:



import org.mybatis.spring.annotation.MapperScan;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.web.client.RestTemplate;

@MapperScan("com.example.order.mapper")
@SpringBootApplication
public class OrderApplication {

    public static void main(String[] args) {
        SpringApplication.run(OrderApplication.class, args);
    }

    @Bean
    public RestTemplate restTemplate() {
        return new RestTemplate();
    }
}

2.3.3.实现远程调用

修改order-service服务中的cn.demo.order.service包下的OrderService类中的queryOrderById方法:

在这里插入图片描述

2.4.提供者与消费者

在服务调用关系中,会有两个不同的角色:

服务提供者:一次业务中,被其它微服务调用的服务。(提供接口给其它微服务)

服务消费者:一次业务中,调用其它微服务的服务。(调用其它微服务提供的接口)

在这里插入图片描述

但是,服务提供者与服务消费者的角色并不是绝对的,而是相对于业务而言。

如果服务A调用了服务B,而服务B又调用了服务C,服务B的角色是什么?

  • 对于A调用B的业务而言:A是服务消费者,B是服务提供者
  • 对于B调用C的业务而言:B是服务消费者,C是服务提供者

因此,服务B既可以是服务提供者,也可以是服务消费者。

3.Eureka注册中心

假如我们的服务提供者user-service部署了多个实例,如图:

在这里插入图片描述

大家思考几个问题:

  • order-service在发起远程调用的时候,该如何得知user-service实例的ip地址和端口?
  • 有多个user-service实例地址,order-service调用时该如何选择?
  • order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

3.1.Eureka的结构和作用

这些问题都需要利用SpringCloud中的注册中心来解决,其中最广为人知的注册中心就是Eureka,其结构如下:

在这里插入图片描述

回答之前的各个问题。

问题1:order-service如何得知user-service实例地址?

获取地址信息的流程如下:

  • user-service服务实例启动后,将自己的信息注册到eureka-server(Eureka服务端)。这个叫服务注册
  • eureka-server保存服务名称到服务实例地址列表的映射关系
  • order-service根据服务名称,拉取实例地址列表。这个叫服务发现或服务拉取

问题2:order-service如何从多个user-service实例中选择具体的实例?

  • order-service从实例列表中利用负载均衡算法选中一个实例地址
  • 向该实例地址发起远程调用

问题3:order-service如何得知某个user-service实例是否依然健康,是不是已经宕机?

  • user-service会每隔一段时间(默认30秒)向eureka-server发起请求,报告自己状态,称为心跳
  • 当超过一定时间没有发送心跳时,eureka-server会认为微服务实例故障,将该实例从服务列表中剔除
  • order-service拉取服务时,就能将故障实例排除了

注意:一个微服务,既可以是服务提供者,又可以是服务消费者,因此eureka将服务注册、服务发现等功能统一封装到了eureka-client端

因此,接下来我们动手实践的步骤包括:

在这里插入图片描述

3.2.搭建eureka-server

首先大家注册中心服务端:eureka-server,这必须是一个独立的微服务

3.2.1.创建eureka-server服务

在cloud-demo父工程下,创建一个子模块:

在这里插入图片描述

填写模块信息:

在这里插入图片描述

然后填写服务信息:
在这里插入图片描述

3.2.2.引入eureka依赖

引入SpringCloud为eureka提供的starter依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-server</artifactId>
</dependency>

3.2.3.编写启动类

给eureka-server服务编写一个启动类,一定要添加一个@EnableEurekaServer注解,开启eureka的注册中心功能:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.cloud.netflix.eureka.server.EnableEurekaServer;

@SpringBootApplication
@EnableEurekaServer
public class EurekaApplication {
    public static void main(String[] args) {
        SpringApplication.run(EurekaApplication.class, args);
    }
}

3.2.4.编写配置文件

编写一个application.yml文件,内容如下:

server:
  port: 10086 # 服务端口
spring:
  application:
    name: eureka-server # eureka的服务名称
eureka:
  client:
    service-url: # ureka的地址信息
      defaultZone: http://127.0.0.1:10086/eureka

3.2.5.启动服务

启动微服务,然后在浏览器访问:http://127.0.0.1:10086

看到下面结果应该是成功了:

在这里插入图片描述

3.3.服务注册

下面,我们将user-service注册到eureka-server中去。

1)引入依赖

在user-service的pom文件中,引入下面的eureka-client依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

2)配置文件

在user-service中,修改application.yml文件,添加服务名称、eureka地址:

spring:
  application:
    name: userservice # user的服务名称
eureka:
  client:
    service-url: # eureka的地址信息
      defaultZone: http://127.0.0.1:10086/eureka

3)启动多个user-service实例

为了演示一个服务有多个实例的场景,我们添加一个SpringBoot的启动配置,再启动一个user-service。

首先,复制原来的user-service启动配置:

在这里插入图片描述

然后,在弹出的窗口中,填写信息:

在这里插入图片描述

现在,SpringBoot窗口会出现两个user-service启动配置:

在这里插入图片描述

不过,第一个是8081端口,第二个是8082端口。

启动两个user-service实例:

在这里插入图片描述

查看eureka-server管理页面:

在这里插入图片描述

3.4.服务发现

下面,我们将order-service的逻辑修改:向eureka-server拉取user-service的信息,实现服务发现。

1)引入依赖

之前说过,服务发现、服务注册统一都封装在eureka-client依赖,因此这一步与服务注册时一致。

在order-service的pom文件中,引入下面的eureka-client依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

2)配置文件

服务发现也需要知道eureka地址,因此第二步与服务注册一致,都是配置eureka信息:

在order-service中,修改application.yml文件,添加服务名称、eureka地址:

spring:
  application:
    name: orderservice
eureka:
  client:
    service-url:
      defaultZone: http://127.0.0.1:10086/eureka

3)服务拉取和负载均衡

最后,我们要去eureka-server中拉取user-service服务的实例列表,并且实现负载均衡。

不过这些动作不用我们去做,只需要添加一些注解即可。

在order-service的OrderApplication中,给RestTemplate这个Bean添加一个@LoadBalanced注解:

在这里插入图片描述

修改order-service服务中的com.example.order.service包下的OrderService类中的queryOrderById方法。修改访问的url路径,用服务名代替ip、端口:

在这里插入图片描述

spring会自动帮助我们从eureka-server端,根据userservice这个服务名称,获取实例列表,而后完成负载均衡。

4.Ribbon负载均衡

上一节中,我们添加了@LoadBalanced注解,即可实现负载均衡功能,这是什么原理呢?

4.1.负载均衡原理

SpringCloud底层其实是利用了一个名为Ribbon的组件,来实现负载均衡功能的。

在这里插入图片描述

那么我们发出的请求明明是http://userservice/user/1,怎么变成了http://localhost:8081的呢?

4.2.源码跟踪

为什么我们只输入了service名称就可以访问了呢?之前还要获取ip和端口。

显然有人帮我们根据service名称,获取到了服务实例的ip和端口。它就是LoadBalancerInterceptor,这个类会在对RestTemplate的请求进行拦截,然后从Eureka根据服务id获取服务列表,随后利用负载均衡算法得到真实的服务地址信息,替换服务id。

我们进行源码跟踪:

1)LoadBalancerIntercepor

在这里插入图片描述

可以看到这里的intercept方法,拦截了用户的HttpRequest请求,然后做了几件事:

  • request.getURI():获取请求uri,本例中就是 http://user-service/user/8
  • originalUri.getHost():获取uri路径的主机名,其实就是服务id,user-service
  • this.loadBalancer.execute():处理服务id,和用户请求。

这里的this.loadBalancerLoadBalancerClient类型,我们继续跟入。

2)LoadBalancerClient

继续跟入execute方法:

在这里插入图片描述

代码是这样的:

  • getLoadBalancer(serviceId):根据服务id获取ILoadBalancer,而ILoadBalancer会拿着服务id去eureka中获取服务列表并保存起来。
  • getServer(loadBalancer):利用内置的负载均衡算法,从服务列表中选择一个。本例中,可以看到获取了8082端口的服务

放行后,再次访问并跟踪,发现获取的是8081:

在这里插入图片描述

果然实现了负载均衡。

3)负载均衡策略IRule

在刚才的代码中,可以看到获取服务使通过一个getServer方法来做负载均衡:

在这里插入图片描述

我们继续跟入:

在这里插入图片描述

继续跟踪源码chooseServer方法,发现这么一段代码:

在这里插入图片描述

我们看看这个rule是谁:

在这里插入图片描述

这里的rule默认值是一个RoundRobinRule,看类的介绍:
在这里插入图片描述

这不就是轮询的意思嘛。

到这里,整个负载均衡的流程我们就清楚了。

4)总结

SpringCloudRibbon的底层采用了一个拦截器,拦截了RestTemplate发出的请求,对地址做了修改。用一幅图来总结一下:

在这里插入图片描述

基本流程如下:

  • 拦截我们的RestTemplate请求http://userservice/user/1
  • RibbonLoadBalancerClient会从请求url中获取服务名称,也就是user-service
  • DynamicServerListLoadBalancer根据user-service到eureka拉取服务列表
  • eureka返回列表,localhost:8081、localhost:8082
  • IRule利用内置负载均衡规则,从列表中选择一个,例如localhost:8081
  • RibbonLoadBalancerClient修改请求地址,用localhost:8081替代userservice,得到http://localhost:8081/user/1,发起真实请求

4.3.负载均衡策略

4.3.1.负载均衡策略

负载均衡的规则都定义在IRule接口中,而IRule有很多不同的实现类:

在这里插入图片描述

不同规则的含义如下:

内置负载均衡规则类规则描述
RoundRobinRule简单轮询服务列表来选择服务器。它是Ribbon默认的负载均衡规则。
AvailabilityFilteringRule对以下两种服务器进行忽略: (1)在默认情况下,这台服务器如果3次连接失败,这台服务器就会被设置为“短路”状态。短路状态将持续30秒,如果再次连接失败,短路的持续时间就会几何级地增加。 (2)并发数过高的服务器。如果一个服务器的并发连接数过高,配置了AvailabilityFilteringRule规则的客户端也会将其忽略。并发连接数的上限,可以由客户端的..ActiveConnectionsLimit属性进行配置。
WeightedResponseTimeRule为每一个服务器赋予一个权重值。服务器响应时间越长,这个服务器的权重就越小。这个规则会随机选择服务器,这个权重值会影响服务器的选择。
ZoneAvoidanceRule以区域可用的服务器为基础进行服务器的选择。使用Zone对服务器进行分类,这个Zone可以理解为一个机房、一个机架等。而后再对Zone内的多个服务做轮询。
BestAvailableRule忽略那些短路的服务器,并选择并发数较低的服务器。
RandomRule随机选择一个可用的服务器。
RetryRule重试机制的选择逻辑

默认的实现就是ZoneAvoidanceRule,是一种轮询方案

4.3.2.自定义负载均衡策略

通过定义IRule实现可以修改负载均衡规则,有两种方式:

  1. 代码方式:在order-service中的OrderApplication类中,定义一个新的IRule:
@Bean
public IRule randomRule(){
    return new RandomRule();
}
  1. 配置文件方式:在order-service的application.yml文件中,添加新的配置也可以修改规则:
userservice: # 给某个微服务配置负载均衡规则,这里是userservice服务
  ribbon:
    NFLoadBalancerRuleClassName: com.netflix.loadbalancer.RandomRule # 负载均衡规则 

注意,一般用默认的负载均衡规则,不做修改。

4.4.饥饿加载

Ribbon默认是采用懒加载,即第一次访问时才会去创建LoadBalanceClient,请求时间会很长。

而饥饿加载则会在项目启动时创建,降低第一次访问的耗时,通过下面配置开启饥饿加载:

ribbon:
  eager-load:
    enabled: true # 开启饥饿加载
    clients: userservice # 指定对userservice这个服务饥饿加载

5.Nacos注册中心

国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。

5.1.认识和安装Nacos

Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富,在国内受欢迎程度较高。

在这里插入图片描述

  • windows命令:
    默认集群启动
startup.cmd

这里需要单机模式启动

startup.cmd -m standalone

在浏览器输入地址:http://127.0.0.1:8848/nacos即可:

5.2.服务注册到nacos

Nacos是SpringCloudAlibaba的组件,而SpringCloudAlibaba也遵循SpringCloud中定义的服务注册、服务发现规范。因此使用Nacos和使用Eureka对于微服务来说,并没有太大区别。

主要差异在于:

  • 依赖不同
  • 服务地址不同

1)引入依赖

在cloud-demo父工程的pom文件中的<dependencyManagement>中引入SpringCloudAlibaba的依赖:
父工程

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-alibaba-dependencies</artifactId>
    <version>2.2.6.RELEASE</version>
    <type>pom</type>
    <scope>import</scope>
</dependency>

然后在user-service和order-service中的pom文件中引入nacos-discovery依赖:

客户端

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

注意:不要忘了注释掉eureka的依赖。

2)配置nacos地址

在user-service和order-service的application.yml中添加nacos地址:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848 # nacos服务地址

注意:不要忘了注释掉eureka的地址

3)重启

重启微服务后,登录nacos管理页面,可以看到微服务信息:

在这里插入图片描述

5.3.服务分级存储模型

一个服务可以有多个实例,例如我们的user-service,可以有:

  • 127.0.0.1:8081
  • 127.0.0.1:8082
  • 127.0.0.1:8083

假如这些实例分布于全国各地的不同机房,例如:

  • 127.0.0.1:8081,在上海机房
  • 127.0.0.1:8082,在上海机房
  • 127.0.0.1:8083,在杭州机房

Nacos就将同一机房内的实例 划分为一个集群

也就是说,user-service是服务,一个服务可以包含多个集群,如杭州、上海,每个集群下可以有多个实例,形成分级模型,如图:

在这里插入图片描述

微服务互相访问时,应该尽可能访问同集群实例,因为本地访问速度更快。当本集群内不可用时,才访问其它集群。例如:

在这里插入图片描述

杭州机房内的order-service应该优先访问同机房的user-service。

5.3.1.给user-service配置集群

修改user-service的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

重启两个user-service实例后,我们可以在nacos控制台看到下面结果:

在这里插入图片描述

我们再次复制一个user-service启动配置,添加属性:

-Dserver.port=8083 -Dspring.cloud.nacos.discovery.cluster-name=SH

配置如图所示:

在这里插入图片描述

启动UserApplication3后再次查看nacos控制台:

在这里插入图片描述

5.3.2.同集群优先的负载均衡

默认的ZoneAvoidanceRule并不能实现根据同集群优先来实现负载均衡。

因此Nacos中提供了一个NacosRule的实现,可以优先从同集群中挑选实例。

1)给order-service配置集群信息

修改order-service的application.yml文件,添加集群配置:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ # 集群名称

2)修改负载均衡规则

修改order-service的application.yml文件,修改负载均衡规则:

userservice:
  ribbon:
    NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule # 负载均衡规则 

5.4.权重配置

实际部署中会出现这样的场景:

服务器设备性能有差异,部分实例所在机器性能较好,另一些较差,我们希望性能好的机器承担更多的用户请求。

但默认情况下NacosRule是同集群内随机挑选,不会考虑机器的性能问题。

因此,Nacos提供了权重配置来控制访问频率,权重越大则访问频率越高。

在nacos控制台,找到user-service的实例列表,点击编辑,即可修改权重:

在这里插入图片描述

在弹出的编辑窗口,修改权重:

在这里插入图片描述

注意:如果权重修改为0,则该实例永远不会被访问

5.5.环境隔离

Nacos提供了namespace来实现环境隔离功能。

  • nacos中可以有多个namespace
  • namespace下可以有group、service等
  • 不同namespace之间相互隔离,例如不同namespace的服务互相不可见

在这里插入图片描述

5.5.1.创建namespace

默认情况下,所有service、data、group都在同一个namespace,名为public:

在这里插入图片描述

我们可以点击页面新增按钮,添加一个namespace:

在这里插入图片描述

然后,填写表单:

在这里插入图片描述

就能在页面看到一个新的namespace:

在这里插入图片描述

5.5.2.给微服务配置namespace

给微服务配置namespace只能通过修改配置来实现。

例如,修改order-service的application.yml文件:

spring:
  cloud:
    nacos:
      server-addr: localhost:8848
      discovery:
        cluster-name: HZ
        namespace: 492a7d5d-237b-46a1-a99a-fa8e98e4b0f9 # 命名空间,填ID

重启order-service后,访问控制台,可以看到下面的结果:

在这里插入图片描述

在这里插入图片描述

此时访问order-service,因为namespace不同,会导致找不到userservice,控制台会报错:

在这里插入图片描述

5.6.Nacos与Eureka的区别

Nacos的服务实例分为两种l类型:

  • 临时实例:如果实例宕机超过一定时间,会从服务列表剔除,默认的类型。

  • 非临时实例:如果实例宕机,不会从服务列表剔除,也可以叫永久实例。

配置一个服务实例为永久实例:

spring:
  cloud:
    nacos:
      discovery:
        ephemeral: false # 设置为非临时实例

Nacos和Eureka整体结构类似,服务注册、服务拉取、心跳等待,但是也存在一些差异:

在这里插入图片描述

  • Nacos与eureka的共同点

    • 都支持服务注册和服务拉取
    • 都支持服务提供者心跳方式做健康检测
  • Nacos与Eureka的区别

    • Nacos支持服务端主动检测提供者状态:临时实例采用心跳模式,非临时实例采用主动检测模式
    • 临时实例心跳不正常会被剔除,非临时实例则不会被剔除
    • Nacos支持服务列表变更的消息推送模式,服务列表更新更及时
    • Nacos集群默认采用AP方式,当集群中存在非临时实例时,采用CP模式;Eureka采用AP方式

6 Nacos配置管理

Nacos除了可以做注册中心,同样可以做配置管理来使用。

6.1 统一配置管理

当微服务部署的实例越来越多,达到数十、数百时,逐个修改微服务配置就会让人抓狂,而且很容易出错。我们需要一种统一配置管理方案,可以集中管理所有实例的配置。
在这里插入图片描述

Nacos一方面可以将配置集中管理,另一方可以在配置变更时,及时通知微服务,实现配置的热更新。

6.1.1 在nacos中添加配置文件

如何在nacos中管理配置呢?

在这里插入图片描述

然后在弹出的表单中,填写配置信息:

在这里插入图片描述

注意:项目的核心配置,需要热更新的配置才有放到nacos管理的必要。基本不会变更的一些配置还是保存在微服务本地比较好。

6.1.2 从微服务拉取配置

微服务要拉取nacos中管理的配置,并且与本地的application.yml配置合并,才能完成项目启动。

但如果尚未读取application.yml,又如何得知nacos地址呢?

因此spring引入了一种新的配置文件:bootstrap.yaml文件,会在application.yml之前被读取,流程如下:

在这里插入图片描述

1)引入nacos-config依赖

首先,在user-service服务中,引入nacos-config的客户端依赖:

<!--nacos配置管理依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-config</artifactId>
</dependency>

2)添加bootstrap.yaml

然后,在user-service中添加一个bootstrap.yaml文件,内容如下:

spring:
  application:
    name: userservice # 服务名称
  profiles:
    active: dev #开发环境,这里是dev 
  cloud:
    nacos:
      server-addr: localhost:8848 # Nacos地址
      config:
        file-extension: yaml # 文件后缀名

再删除applocation.yml中多余的配置文件

这里会根据spring.cloud.nacos.server-addr获取nacos地址,再根据

${spring.application.name}-${spring.profiles.active}.${spring.cloud.nacos.config.file-extension}作为文件id,来读取配置。

本例中,就是去读取userservice-dev.yaml

在这里插入图片描述

3)读取nacos配置

在user-service中的UserController中添加业务逻辑,读取pattern.dateformat配置:

在这里插入图片描述

完整代码:

import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.*;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Value("${pattern.dateformat}")
    private String dateformat;
    
    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(dateformat));
    }
    // ...略
}

在页面访问,可以看到效果:

在这里插入图片描述

6.2 配置热更新

我们最终的目的,是修改nacos中的配置后,微服务中无需重启即可让配置生效,也就是配置热更新

要实现配置热更新,可以使用两种方式:

6.2.1 方式一

在@Value注入的变量所在类上添加注解@RefreshScope

在这里插入图片描述

6.2.2.方式二

使用@ConfigurationProperties注解代替@Value注解。

在user-service服务中,添加一个类,读取patterrn.dateformat属性:

import lombok.Data;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.stereotype.Component;

@Component
@Data
@ConfigurationProperties(prefix = "pattern")
public class PatternProperties {
    private String dateformat;
}

在UserController中使用这个类代替@Value:
在这里插入图片描述

完整代码:

import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

@Slf4j
@RestController
@RequestMapping("/user")
public class UserController {

    @Autowired
    private UserService userService;

    @Autowired
    private PatternProperties patternProperties;

    @GetMapping("now")
    public String now(){
        return LocalDateTime.now().format(DateTimeFormatter.ofPattern(patternProperties.getDateformat()));
    }

    // 略
}

6.3 配置共享

其实微服务启动时,会去nacos读取多个配置文件,例如:

  • [spring.application.name]-[spring.profiles.active].yaml,例如:userservice-dev.yaml

  • [spring.application.name].yaml,例如:userservice.yaml

[spring.application.name].yaml不包含环境,因此可以被多个环境共享。

下面我们通过案例来测试配置共享

1)添加一个环境共享配置

我们在nacos中添加一个userservice.yaml文件:

在这里插入图片描述

2)在user-service中读取共享配置

在user-service服务中,修改PatternProperties类,读取新添加的属性:

在这里插入图片描述

在user-service服务中,修改UserController,添加一个方法:
在这里插入图片描述

3)运行两个UserApplication,使用不同的profile

修改UserApplication2这个启动项,改变其profile值:
在这里插入图片描述

![[]](https://img-blog.csdnimg.cn/68bc44b97d064701bcd4a53f93d9bbe7.png)

这样,UserApplication(8081)使用的profile是dev,UserApplication2(8082)使用的profile是test。

启动UserApplication和UserApplication2

访问http://localhost:8081/user/prop,结果:

在这里插入图片描述

访问http://localhost:8082/user/prop,结果:

在这里插入图片描述

可以看出来,不管是dev,还是test环境,都读取到了envSharedValue这个属性的值。

4)配置共享的优先级

当nacos、服务本地同时出现相同属性时,优先级有高低之分:

在这里插入图片描述

6.4.搭建Nacos集群

Nacos生产环境下一定要部署为集群状态,部署方式参考主页。

7 Feign远程调用

先来看我们以前利用RestTemplate发起远程调用的代码:

在这里插入图片描述

存在下面的问题:

•代码可读性差,编程体验不统一

•参数复杂URL难以维护

Feign是一个声明式的http客户端,官方地址:https://github.com/OpenFeign/feign

其作用就是帮助我们优雅的实现http请求的发送,解决上面提到的问题。

在这里插入图片描述

7.1.Feign替代RestTemplate

Fegin的使用步骤如下:

1)引入依赖

我们在order-service服务的pom文件中引入feign的依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

2)添加注解

在order-service的启动类添加注解开启Feign的功能:

在这里插入图片描述

3)编写Feign的客户端

在order-service中新建一个接口,内容如下:

import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;

@FeignClient("userservice")
public interface UserClient {
    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

这个客户端主要是基于SpringMVC的注解来声明远程调用的信息,比如:

  • 服务名称:userservice
  • 请求方式:GET
  • 请求路径:/user/{id}
  • 请求参数:Long id
  • 返回值类型:User

这样,Feign就可以帮助我们发送http请求,无需自己使用RestTemplate来发送了。

4)测试

修改order-service中的OrderService类中的queryOrderById方法,使用Feign客户端代替RestTemplate:

在这里插入图片描述

是不是看起来优雅多了。

5)总结

使用Feign的步骤:

① 引入依赖

② 添加@EnableFeignClients注解

③ 编写FeignClient接口

④ 使用FeignClient中定义的方法代替RestTemplate

7.2 自定义配置

Feign可以支持很多的自定义配置,如下表所示:

类型作用说明
feign.Logger.Level修改日志级别包含四种不同的级别:NONE、BASIC、HEADERS、FULL
feign.codec.Decoder响应结果的解析器http远程调用的结果做解析,例如解析json字符串为java对象
feign.codec.Encoder请求参数编码将请求参数编码,便于通过http请求发送
feign. Contract支持的注解格式默认是SpringMVC的注解
feign. Retryer失败重试机制请求失败的重试机制,默认是没有,不过会使用Ribbon的重试

一般情况下,默认值就能满足我们使用,如果要自定义时,只需要创建自定义的@Bean覆盖默认Bean即可。

下面以日志为例来演示如何自定义配置。

7.2.1 配置文件方式

基于配置文件修改feign的日志级别可以针对单个服务:

feign:  
  client:
    config: 
      userservice: # 针对某个微服务的配置
        loggerLevel: FULL #  日志级别 

也可以针对所有服务:

feign:  
  client:
    config: 
      default: # 这里用default就是全局配置,如果是写服务名称,则是针对某个微服务的配置
        loggerLevel: FULL #  日志级别 

而日志的级别分为四种:

  • NONE:不记录任何日志信息,这是默认值。
  • BASIC:仅记录请求的方法,URL以及响应状态码和执行时间
  • HEADERS:在BASIC的基础上,额外记录了请求和响应的头信息
  • FULL:记录所有请求和响应的明细,包括头信息、请求体、元数据。

7.2.2 Java代码方式

也可以基于Java代码来修改日志级别,先声明一个类,然后声明一个Logger.Level的对象:

public class DefaultFeignConfiguration  {
    @Bean
    public Logger.Level feignLogLevel(){
        return Logger.Level.BASIC; // 日志级别为BASIC
    }
}

如果要全局生效,将其放到启动类的@EnableFeignClients这个注解中:

@EnableFeignClients(defaultConfiguration = DefaultFeignConfiguration .class) 

如果是局部生效,则把它放到对应的@FeignClient这个注解中:

@FeignClient(value = "userservice", configuration = DefaultFeignConfiguration .class) 

7.3 Feign使用优化

Feign底层发起http请求,依赖于其它的框架。其底层客户端实现包括:

•URLConnection:默认实现,不支持连接池

•Apache HttpClient :支持连接池

•OKHttp:支持连接池

因此提高Feign的性能主要手段就是使用连接池代替默认的URLConnection。

这里我们用Apache的HttpClient来演示。

1)引入依赖

在order-service的pom文件中引入Apache的HttpClient依赖:

<!--httpClient的依赖 -->
<dependency>
    <groupId>io.github.openfeign</groupId>
    <artifactId>feign-httpclient</artifactId>
</dependency>

2)配置连接池

在order-service的application.yml中添加配置:

feign:
  client:
    config:
      default: # default全局的配置
        loggerLevel: BASIC # 日志级别,BASIC就是基本的请求和响应信息
  httpclient:
    enabled: true # 开启feign对HttpClient的支持
    max-connections: 200 # 最大的连接数
    max-connections-per-route: 50 # 每个路径的最大连接数

接下来,在FeignClientFactoryBean中的loadBalance方法中打断点:

在这里插入图片描述

Debug方式启动order-service服务,可以看到这里的client,底层就是Apache HttpClient:

在这里插入图片描述

总结,Feign的优化:

1.日志级别尽量用basic,最好使用默认的none,不开日志的情况下性能会提升很多。

2.使用HttpClient或OKHttp代替URLConnection

① 引入feign-httpClient依赖

② 配置文件开启httpClient功能,设置连接池参数

7.4 最佳实践

所谓最近实践,就是使用过程中总结的经验,最好的一种使用方式。

自习观察可以发现,Feign的客户端与服务提供者的controller代码非常相似:

feign客户端:

在这里插入图片描述

UserController:

在这里插入图片描述

有没有一种办法简化这种重复的代码编写呢?

7.4.1 继承方式

一样的代码可以通过继承来共享:

1)定义一个API接口,利用定义方法,并基于SpringMVC注解做声明。

2)Feign客户端和Controller都集成改接口

在这里插入图片描述

优点:

  • 简单
  • 实现了代码共享

缺点:

  • 服务提供方、服务消费方紧耦合

  • 参数列表中的注解映射并不会继承,因此Controller中必须再次声明方法、参数列表、注解

7.4.2 抽取方式

将Feign的Client抽取为独立模块,并且把接口有关的POJO、默认的Feign配置都放到这个模块中,提供给所有消费者使用。

例如,将UserClient、User、Feign的默认配置都抽取到一个feign-api包中,所有微服务引用该依赖包,即可直接使用。

在这里插入图片描述

7.4.3 实现基于抽取的最佳实践

1)抽取

首先创建一个module,命名为feign-api:

在这里插入图片描述

项目结构:

在这里插入图片描述

在feign-api中然后引入feign的starter依赖

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>

然后,order-service中编写的UserClient、User、DefaultFeignConfiguration都复制到feign-api项目中

在这里插入图片描述

2)在order-service中使用feign-api

首先,删除order-service中的UserClient、User、DefaultFeignConfiguration等类或接口。

在order-service的pom文件中中引入feign-api的依赖:

<dependency>
    <groupId>cn.demo.demo</groupId>
    <artifactId>feign-api</artifactId>
    <version>1.0</version>
</dependency>

修改order-service中的所有与上述三个组件有关的导包部分,改成导入feign-api中的包

3)重启测试

重启后,发现服务报错了:

在这里插入图片描述

这是因为UserClient现在在cn.demo.feign.clients包下,

而order-service的@EnableFeignClients注解是在cn.demo.order包下,不在同一个包,无法扫描到UserClient。

4)解决扫描包问题

方式一:

指定Feign应该扫描的包:

@EnableFeignClients(basePackages = "cn.demo.feign.clients")

方式二:

指定需要加载的Client接口:

@EnableFeignClients(clients = {UserClient.class})

8 Gateway服务网关

Spring Cloud Gateway 是 Spring Cloud 的一个全新项目,该项目是基于 Spring 5.0,Spring Boot 2.0 和 Project Reactor 等响应式编程和事件流技术开发的网关,它旨在为微服务架构提供一种简单有效的统一的 API 路由管理方式。

8.1 为什么需要网关

Gateway网关是我们服务的守门神,所有微服务的统一入口。

网关的核心功能特性

  • 请求路由
  • 权限控制
  • 限流

架构图:

在这里插入图片描述

权限控制:网关作为微服务入口,需要校验用户是是否有请求资格,如果没有则进行拦截。

路由和负载均衡:一切请求都必须先经过gateway,但网关不处理业务,而是根据某种规则,把请求转发到某个微服务,这个过程叫做路由。当然路由的目标服务有多个时,还需要做负载均衡。

限流:当请求流量过高时,在网关中按照下流的微服务能够接受的速度来放行请求,避免服务压力过大。

在SpringCloud中网关的实现包括两种:

  • gateway
  • zuul

Zuul是基于Servlet的实现,属于阻塞式编程。而SpringCloudGateway则是基于Spring5中提供的WebFlux,属于响应式编程的实现,具备更好的性能。

8.2 gateway快速入门

下面,我们就演示下网关的基本路由功能。基本步骤如下:

  1. 创建SpringBoot工程gateway,引入网关依赖
  2. 编写启动类
  3. 编写基础配置和路由规则
  4. 启动网关服务进行测试

1)创建gateway服务,引入依赖

创建服务:

在这里插入图片描述

引入依赖:

<!--网关-->
<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<!--nacos服务发现依赖-->
<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

2)编写启动类

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class GatewayApplication {

	public static void main(String[] args) {
		SpringApplication.run(GatewayApplication.class, args);
	}
}

3)编写基础配置和路由规则

创建application.yml文件,内容如下:

server:
  port: 10010 # 网关端口
spring:
  application:
    name: gateway # 服务名称
  cloud:
    nacos:
      server-addr: localhost:8848 # nacos地址
    gateway:
      routes: # 网关路由配置
        - id: user-service # 路由id,自定义,只要唯一即可
          # uri: http://127.0.0.1:8081 # 路由的目标地址 http就是固定地址
          uri: lb://userservice # 路由的目标地址 lb就是负载均衡,后面跟服务名称
          predicates: # 路由断言,也就是判断请求是否符合路由规则的条件
            - Path=/user/** # 这个是按照路径匹配,只要以/user/开头就符合要求
        - id: order-service
          uri: lb://orderservice
          predicates:
            - Path=/order/**

我们将符合Path 规则的一切请求,都代理到 uri参数指定的地址。

本例中,我们将 /user/**开头的请求,代理到lb://userservice,lb是负载均衡,根据服务名拉取服务列表,实现负载均衡。

4)重启测试

重启网关,访问http://localhost:10010/user/1时,符合/user/**规则,请求转发到uri:http://userservice/user/1,得到了结果:

在这里插入图片描述

5)网关路由的流程图

整个访问的流程如下:

在这里插入图片描述

总结:

网关搭建步骤:

  1. 创建项目,引入nacos服务发现和gateway依赖

  2. 配置application.yml,包括服务基本信息、nacos地址、路由

路由配置包括:

  1. 路由id:路由的唯一标示

  2. 路由目标(uri):路由的目标地址,http代表固定地址,lb代表根据服务名负载均衡

  3. 路由断言(predicates):判断路由的规则,

  4. 路由过滤器(filters):对请求或响应做处理

接下来,就重点来学习路由断言和路由过滤器的详细知识

8.3 断言工厂

我们在配置文件中写的断言规则只是字符串,这些字符串会被Predicate Factory读取并处理,转变为路由判断的条件

例如Path=/user/**是按照路径匹配,这个规则是由

org.springframework.cloud.gateway.handler.predicate.PathRoutePredicateFactory类来

处理的,像这样的断言工厂在SpringCloudGateway还有十几个:

名称说明示例
After是某个时间点后的请求- After=2037-01-20T17:42:47.789-07:00[America/Denver]
Before是某个时间点之前的请求- Before=2031-04-13T15:14:47.433+08:00[Asia/Shanghai]
Between是某两个时间点之前的请求- Between=2037-01-20T17:42:47.789-07:00[America/Denver], 2037-01-21T17:42:47.789-07:00[America/Denver]
Cookie请求必须包含某些cookie- Cookie=chocolate, ch.p
Header请求必须包含某些header- Header=X-Request-Id, \d+
Host请求必须是访问某个host(域名)- Host=.somehost.org,.anotherhost.org
Method请求方式必须是指定方式- Method=GET,POST
Path请求路径必须符合指定规则- Path=/red/{segment},/blue/**
Query请求参数必须包含指定参数- Query=name, Jack或者- Query=name
RemoteAddr请求者的ip必须是指定范围- RemoteAddr=192.168.1.1/24
Weight权重处理

我们只需要掌握Path这种路由工程就可以了。

8.4 过滤器工厂

GatewayFilter是网关中提供的一种过滤器,可以对进入网关的请求和微服务返回的响应做处理:

在这里插入图片描述

8.4.1 路由过滤器的种类

Spring提供了31种不同的路由过滤器工厂。例如:

名称说明
AddRequestHeader给当前请求添加一个请求头
RemoveRequestHeader移除请求中的一个请求头
AddResponseHeader给响应结果中添加一个响应头
RemoveResponseHeader从响应结果中移除有一个响应头
RequestRateLimiter限制请求的流量

8.4.2 请求头过滤器

下面我们以AddRequestHeader 为例来讲解。

需求:给所有进入userservice的请求添加一个请求头:Truth=demo is freaking awesome!

只需要修改gateway服务的application.yml文件,添加路由过滤即可:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/** 
        filters: # 过滤器
        - AddRequestHeader=Truth, demo is freaking awesome! # 添加请求头

当前过滤器写在userservice路由下,因此仅仅对访问userservice的请求有效。

8.4.3 默认过滤器

如果要对所有的路由都生效,则可以将过滤器工厂写到default下。格式如下:

spring:
  cloud:
    gateway:
      routes:
      - id: user-service 
        uri: lb://userservice 
        predicates: 
        - Path=/user/**
      default-filters: # 默认过滤项
      - AddRequestHeader=Truth, demo is freaking awesome! 

8.4.4 总结

过滤器的作用是什么?

① 对路由的请求或响应做加工处理,比如添加请求头

② 配置在路由下的过滤器只对当前路由的请求生效

defaultFilters的作用是什么?

① 对所有路由都生效的过滤器

8.5 全局过滤器

上一节学习的过滤器,网关提供了31种,但每一种过滤器的作用都是固定的。如果我们希望拦截请求,做自己的业务逻辑则没办法实现。

8.5.1 全局过滤器作用

全局过滤器的作用也是处理一切进入网关的请求和微服务响应,与GatewayFilter的作用一样。区别在于GatewayFilter通过配置定义,处理逻辑是固定的;而GlobalFilter的逻辑需要自己写代码实现。

定义方式是实现GlobalFilter接口。

public interface GlobalFilter {
    /**
     *  处理当前请求,有必要的话通过{@link GatewayFilterChain}将请求交给下一个过滤器处理
     *
     * @param exchange 请求上下文,里面可以获取Request、Response等信息
     * @param chain 用来把请求委托给下一个过滤器 
     * @return {@code Mono<Void>} 返回标示当前过滤器业务结束
     */
    Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain);
}

在filter中编写自定义逻辑,可以实现下列功能:

  • 登录状态判断
  • 权限校验
  • 请求限流等

8.5.2 自定义全局过滤器

需求:定义全局过滤器,拦截请求,判断请求的参数是否满足下面条件:

  • 参数中是否有authorization,

  • authorization参数值是否为admin

如果同时满足则放行,否则拦截

实现:

在gateway中定义一个过滤器:


import org.springframework.cloud.gateway.filter.GatewayFilterChain;
import org.springframework.cloud.gateway.filter.GlobalFilter;
import org.springframework.core.annotation.Order;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;

@Order(-1)
@Component
public class AuthorizeFilter implements GlobalFilter {
    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        // 1.获取请求参数
        MultiValueMap<String, String> params = exchange.getRequest().getQueryParams();
        // 2.获取authorization参数
        String auth = params.getFirst("authorization");
        // 3.校验
        if ("admin".equals(auth)) {
            // 放行
            return chain.filter(exchange);
        }
        // 4.拦截
        // 4.1.禁止访问,设置状态码
        exchange.getResponse().setStatusCode(HttpStatus.FORBIDDEN);
        // 4.2.结束处理
        return exchange.getResponse().setComplete();
    }
}

8.5.3 过滤器执行顺序

请求进入网关会碰到三类过滤器:当前路由的过滤器、DefaultFilter、GlobalFilter

请求路由后,会将当前路由过滤器和DefaultFilter、GlobalFilter,合并到一个过滤器链(集合)中,排序后依次执行每个过滤器:
在这里插入图片描述

排序的规则是什么呢?

  • 每一个过滤器都必须指定一个int类型的order值,order值越小,优先级越高,执行顺序越靠前
  • GlobalFilter通过实现Ordered接口,或者添加@Order注解来指定order值,由我们自己指定
  • 路由过滤器和defaultFilter的order由Spring指定,默认是按照声明顺序从1递增。
  • 当过滤器的order值一样时,会按照 defaultFilter > 路由过滤器 > GlobalFilter的顺序执行。

详细内容,可以查看源码:

org.springframework.cloud.gateway.route.RouteDefinitionRouteLocator#getFilters()方法是先加载defaultFilters,然后再加载某个route的filters,然后合并。

org.springframework.cloud.gateway.handler.FilteringWebHandler#handle()方法会加载全局过滤器,与前面的过滤器合并后根据order排序,组织过滤器链

8.6 跨域问题

8.6.1 什么是跨域问题

跨域:域名不一致就是跨域,主要包括:

  • 域名不同: www.taobao.com 和 www.taobao.org 和 www.jd.com 和 miaosha.jd.com

  • 域名相同,端口不同:localhost:8080和localhost8081

跨域问题:浏览器禁止请求的发起者与服务端发生跨域ajax请求,请求被浏览器拦截的问题

解决方案:CORS,这个以前应该学习过,这里不再赘述了。不知道的小伙伴可以查看https://www.ruanyifeng.com/blog/2016/04/cors.html

8.6.2 模拟跨域问题

找到课前资料的页面文件:

在这里插入图片描述

打开HBuilder X前端工具将index.html放入任意文件夹
在这里插入图片描述
再运行到任意浏览器
在这里插入图片描述
在这里插入图片描述

可以在浏览器控制台看到下面的错误:

在这里插入图片描述

从localhost:8090访问localhost:10010,端口不同,显然是跨域的请求。

浏览器访问的路径
在这里插入图片描述

成功访问到数据
在这里插入图片描述

8.6.3 解决跨域问题

在gateway服务的application.yml文件中,添加下面的配置:

spring:
  cloud:
    gateway:
      # 。。。
      globalcors: # 全局的跨域处理
        add-to-simple-url-handler-mapping: true # 解决options请求被拦截问题
        corsConfigurations:
          '[/**]':
            allowedOrigins: # 允许哪些网站的跨域请求 
              - "http://localhost:8090"
              - "http://127.0.0.1:8849" # 浏览器访问的路径
            allowedMethods: # 允许的跨域ajax的请求方式
              - "GET"
              - "POST"
              - "DELETE"
              - "PUT"
              - "OPTIONS"
            allowedHeaders: "*" # 允许在请求中携带的头信息
            allowCredentials: true # 是否允许携带cookie
            maxAge: 360000 # 这次跨域检测的有效期

Dubbo

1 Dubbo概述

1.1 什么是RPC

RPC是Remote Procedure Call的缩写 翻译为:远程过程调用

目标是为了实现两台(多台)计算机\服务器,互相调用方法\通信的解决方案

RPC的概念主要定义了两部分内容

1.序列化协议

2.通信协议

为了方便大家理解RPC,下面的图片帮助理解

在这里插入图片描述

上面图是老婆和老公在家的时,老婆让老公洗碗的调用流程

但这个流程是本地的,

我们再换成远程调用的图片

在这里插入图片描述

通信协议

通信协议指的就是远程调用的通信方式

再上面图片调用中,老婆使用手机信息的方法通知老公去洗碗

实际上这个通知的方式可以有多种

例如:写信,飞鸽传书,闪送等等

序列化协议

序列化协议指通信内容的格式,双方都要理解这个格式

上面的图片中,老婆给老公发信息,一定是双方都能理解的信息

发送信息是序列化过程,接收信息需要反序列化

1.2 什么是Dubbo

理解了RPC再学习Dubbo就会简单一些了

Dubbo是一套RPC框架。既然是框架,我们可以在框架结构高度,定义Dubbo中使用的通信协议,使用的序列化框架技术,而数据格式由Dubbo定义,我们负责配置之后直接通过客户端调用服务端代码。

简单来说,Dubbo就是RPC概念的实现

Dubbo是Spring Cloud Alibaba提供的一个框架

能够实现微服务项目的互相调用

Dubbo的发展历程
在这里插入图片描述

2012年底dubbo停止更新后到2017年dubbo继续更新之前

2015SpringCloud开始兴起,当时没有阿里的框架

国内公司要从SpringCloud和Dubbo中抉择使用哪个微服务方案

在2012年dubbo停止更新后国内的当当网在dubbo的基础上开发了dubboX框架,并进行维护

2019年后,SpringCloud和Dubbo才能共同使用

1.3 Dubbo的协议支持

RPC框架分通信协议和序列化协议

Dubbo框架支持多种通信协议和序列化协议,可以通过配置文件进行修改

支持的通信协议有

dubbo协议(默认)
rmi协议
hessian协议
http协议
webservice

支持的序列化协议

hessian2(默认)
java序列化
compactedjava
nativejava
fastjson
dubbo
fst
kryo
Dubbo默认情况下,协议的特征如下

采用NIO单一长连接
优秀的并发性能,但是大型文件的处理差
Dubbo开发简单,有助于提升开发效率

1.4 Dubbo服务的注册与发现

在Dubbo的调用过程中,必须包含注册中心的支持

注册中心推荐使用Nacos,但是如果使用其他软件也能实现例如(Redis,zookeeper等)

服务发现,即消费端自动发现服务地址列表的能力,是微服务框架需要具备的关键能力,借助于自动化的服务发现,微服务之间可以在无需感知对端部署位置与 IP 地址的情况下实现通信。

上面的示例中,老婆就是服务器的发现者,它能够获取老公的所有功能列表

老婆一旦调用公的服务就完成了Dubbo的调用

在这里插入图片描述

consumer服务的消费者,指服务的调用者(使用者)也就是老婆的位置

provider服务的提供者,指服务的拥有者(生产者)也就是老公的位置

在Dubbo中,远程调用依据是服务的提供者在Nacos中注册的服务名称

一个服务名称,可能有多个运行的实例,任何一个空闲的实例都可以提供服务

常见面试题:Dubbo的注册发现流程

1.首先服务的提供者启动服务到注册中心注册,包括各种ip端口信息,Dubbo会同时注册该项目提供的远程调用的方法

2.服务的消费者(使用者)注册到注册中心,订阅发现

3.当有新的远程调用方法注册到注册中心时,注册中心会通知服务的消费者有哪些新的方法,如何调用的信息

4.RPC调用,在上面条件满足的情况下,服务的调用者无需知道ip和端口号,只需要服务名称就可以调用到服务提供者的方法

1.5 Dubbo实现微服务调用

user-serviceorder-service中添加依赖

<!-- Dubbo依赖 -->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-starter-dubbo</artifactId>
        </dependency>

在这两个模块中的yml中添加dubbon配置

dubbo:
  protocol:
    port: -1 # 设置Dubbo服务调用的端口 设置-1能够实现动态自动设置合适端口,生成规则是从20880开始递增
    name: dubbo # 设置端口名称,一般固定就叫dubbo
  registry:
    address: nacos://localhost:8848 # 配置当前Dubbo注册中心的类型和地址
  consumer:
    check: false # 设置为false表示当前项目启动时,不检查要调用的远程服务是否可用,避免报错

user-service中的UserService添加注解

// @DubboService注解表示当前业务逻辑层实现类中的所有方法
// 均会注册到Nacos,成为Dubbo可以被发现的业务逻辑层方法
@DubboService

在user-service启动类中添加

// 如果当前项目是Dubbo服务的生产者,必须添加这个注解
@EnableDubbo

在order-service中通过以下代码去调用user-service

	@DubboReference
    private IUserService userService;

1.6 Dubbo内置负载均衡策略算法

Dubbo内置4种负载均衡算法

random loadbalance:随机分配策略(默认)
round Robin Loadbalance:权重平均分配
leastactive Loadbalance:活跃度自动感知分配
consistanthash Loadbalance:一致性hash算法分配

Docker

1.初识Docker

1.1.什么是Docker

微服务虽然具备各种各样的优势,但服务的拆分通用给部署带来了很大的麻烦。

  • 分布式系统中,依赖的组件非常多,不同组件之间部署时往往会产生一些冲突。
  • 在数百上千台服务中重复部署,环境不一定一致,会遇到各种问题

1.1.1.应用部署的环境问题

大型项目组件较多,运行环境也较为复杂,部署时会碰到一些问题:

  • 依赖关系复杂,容易出现兼容性问题

  • 开发、测试、生产环境有差异

在这里插入图片描述

例如一个项目中,部署时需要依赖于node.js、Redis、RabbitMQ、MySQL等,这些服务部署时所需要的函数库、依赖项各不相同,甚至会有冲突。给部署带来了极大的困难。

1.1.2.Docker解决依赖兼容问题

而Docker确巧妙的解决了这些问题,Docker是如何实现的呢?

Docker为了解决依赖的兼容问题的,采用了两个手段:

  • 将应用的Libs(函数库)、Deps(依赖)、配置与应用一起打包

  • 将每个应用放到一个隔离容器去运行,避免互相干扰

在这里插入图片描述

这样打包好的应用包中,既包含应用本身,也保护应用所需要的Libs、Deps,无需再操作系统上安装这些,自然就不存在不同应用之间的兼容问题了。

虽然解决了不同应用的兼容问题,但是开发、测试等环境会存在差异,操作系统版本也会有差异,怎么解决这些问题呢?

1.1.3.Docker解决操作系统环境差异

要解决不同操作系统环境差异问题,必须先了解操作系统结构。以一个Ubuntu操作系统为例,结构如下:

在这里插入图片描述

结构包括:

  • 计算机硬件:例如CPU、内存、磁盘等
  • 系统内核:所有Linux发行版的内核都是Linux,例如CentOS、Ubuntu、Fedora等。内核可以与计算机硬件交互,对外提供内核指令,用于操作计算机硬件。
  • 系统应用:操作系统本身提供的应用、函数库。这些函数库是对内核指令的封装,使用更加方便。

应用于计算机交互的流程如下:

1)应用调用操作系统应用(函数库),实现各种功能

2)系统函数库是对内核指令集的封装,会调用内核指令

3)内核指令操作计算机硬件

Ubuntu和CentOSpringBoot都是基于Linux内核,无非是系统应用不同,提供的函数库有差异:
在这里插入图片描述

此时,如果将一个Ubuntu版本的MySQL应用安装到CentOS系统,MySQL在调用Ubuntu函数库时,会发现找不到或者不匹配,就会报错了:

在这里插入图片描述

Docker如何解决不同系统环境的问题?

  • Docker将用户程序与所需要调用的系统(比如Ubuntu)函数库一起打包
  • Docker运行到不同操作系统时,直接基于打包的函数库,借助于操作系统的Linux内核来运行

如图:

在这里插入图片描述

1.1.4.小结

Docker如何解决大型项目依赖关系复杂,不同组件依赖的兼容性问题?

  • Docker允许开发中将应用、依赖、函数库、配置一起打包,形成可移植镜像
  • Docker应用运行在容器中,使用沙箱机制,相互隔离

Docker如何解决开发、测试、生产环境有差异的问题?

  • Docker镜像中包含完整运行环境,包括系统函数库,仅依赖系统的Linux内核,因此可以在任意Linux操作系统上运行

Docker是一个快速交付应用、运行应用的技术,具备下列优势:

  • 可以将程序及其依赖、运行环境一起打包为一个镜像,可以迁移到任意Linux操作系统
  • 运行时利用沙箱机制形成隔离容器,各个应用互不干扰
  • 启动、移除都可以通过一行命令完成,方便快捷

1.2.Docker和虚拟机的区别

Docker可以让一个应用在任何操作系统中非常方便的运行。而以前我们接触的虚拟机,也能在一个操作系统中,运行另外一个操作系统,保护系统中的任何应用。

两者有什么差异呢?

虚拟机(virtual machine)是在操作系统中模拟硬件设备,然后运行另一个操作系统,比如在 Windows 系统里面运行 Ubuntu 系统,这样就可以运行任意的Ubuntu应用了。

Docker仅仅是封装函数库,并没有模拟完整的操作系统,如图:

在这里插入图片描述

对比来看:

在这里插入图片描述

小结:

Docker和虚拟机的差异:

  • docker是一个系统进程;虚拟机是在操作系统中的操作系统

  • docker体积小、启动速度快、性能好;虚拟机体积大、启动速度慢、性能一般

1.3.Docker架构

1.3.1.镜像和容器

Docker中有几个重要的概念:

镜像(Image):Docker将应用程序及其所需的依赖、函数库、环境、配置等文件打包在一起,称为镜像。

容器(Container):镜像中的应用程序运行后形成的进程就是容器,只是Docker会给容器进程做隔离,对外不可见。

一切应用最终都是代码组成,都是硬盘中的一个个的字节形成的文件。只有运行时,才会加载到内存,形成进程。

镜像,就是把一个应用在硬盘上的文件、及其运行环境、部分系统函数库文件一起打包形成的文件包。这个文件包是只读的。

容器呢,就是将这些文件中编写的程序、函数加载到内存中允许,形成进程,只不过要隔离起来。因此一个镜像可以启动多次,形成多个容器进程。

在这里插入图片描述

例如你下载了一个QQ,如果我们将QQ在磁盘上的运行文件及其运行的操作系统依赖打包,形成QQ镜像。然后你可以启动多次,双开、甚至三开QQ,跟多个妹子聊天。

1.3.2.DockerHub

开源应用程序非常多,打包这些应用往往是重复的劳动。为了避免这些重复劳动,人们就会将自己打包的应用镜像,例如Redis、MySQL镜像放到网络上,共享使用,就像GitHub的代码共享一样。

  • DockerHub:DockerHub是一个官方的Docker镜像的托管平台。这样的平台称为Docker Registry。

  • 国内也有类似于DockerHub 的公开服务,比如 网易云镜像服务阿里云镜像库等。

我们一方面可以将自己的镜像共享到DockerHub,另一方面也可以从DockerHub拉取镜像:

在这里插入图片描述

1.3.3.Docker架构

我们要使用Docker来操作镜像、容器,就必须要安装Docker。

Docker是一个CS架构的程序,由两部分组成:

  • 服务端(server):Docker守护进程,负责处理Docker指令,管理镜像、容器等

  • 客户端(client):通过命令或RestAPI向Docker服务端发送指令。可以在本地或远程向服务端发送指令。

如图:

在这里插入图片描述

1.3.4.小结

镜像:

  • 将应用程序及其依赖、环境、配置打包在一起

容器:

  • 镜像运行起来就是容器,一个镜像可以运行多个容器

Docker结构:

  • 服务端:接收命令或远程请求,操作镜像或容器

  • 客户端:发送命令或者请求到Docker服务端

DockerHub:

  • 一个镜像托管的服务器,类似的还有阿里云镜像服务,统称为DockerRegistry

1.4.安装Docker

企业部署一般都是采用Linux操作系统,而其中又数CentOS发行版占比最多,因此我们在CentOS下安装Docker。

1.4.1 安装Docker

Docker 分为 CE 和 EE 两大版本。CE 即社区版(免费,支持周期 7 个月),EE 即企业版,强调安全,付费使用,支持周期 24 个月。

Docker CE 分为 stable testnightly 三个更新频道。

官方网站上有各种环境下的 安装指南,这里主要介绍 Docker CE 在 CentOS上的安装。

1.4.2 CentOS安装Docker

Docker CE 支持 64 位版本 CentOS 7,并且要求内核版本不低于 3.10, CentOS 7 满足最低内核的要求,所以我们在CentOS 7安装Docker。

切换到root用户权限

su

切换回个人用户权限

exit

连接linux过程中ifconfig没有找到,则是config没有安装

yum install net-tools.x86_64

1.4.3 卸载(可选)

如果之前安装过旧版本的Docker,可以使用下面命令卸载:

yum remove docker \
                  docker-client \
                  docker-client-latest \
                  docker-common \
                  docker-latest \
                  docker-latest-logrotate \
                  docker-logrotate \
                  docker-selinux \
                  docker-engine-selinux \
                  docker-engine \
                  docker-ce

1.4.4 安装docker

首先需要大家虚拟机联网,安装yum工具

yum install -y yum-utils \
           device-mapper-persistent-data \
           lvm2 --skip-broken

然后更新本地镜像源:

# 设置docker镜像源
yum-config-manager \
    --add-repo \
    https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
    
sed -i 's/download.docker.com/mirrors.aliyun.com\/docker-ce/g' /etc/yum.repos.d/docker-ce.repo

yum makecache fast

然后输入命令:

yum install -y docker-ce

docker-ce为社区免费版本。稍等片刻,docker即可安装成功。

1.4.5 启动docker

Docker应用需要用到各种端口,逐一去修改防火墙设置。非常麻烦,因此建议大家直接关闭防火墙!

启动docker前,一定要关闭防火墙后!!

启动docker前,一定要关闭防火墙后!!

启动docker前,一定要关闭防火墙后!!

# 关闭
systemctl stop firewalld
# 禁止开机启动防火墙
systemctl disable firewalld
# 查看防火墙的状态
systemctl status firewalld

通过命令启动docker:

systemctl start docker  # 启动docker服务

systemctl stop docker  # 停止docker服务

systemctl restart docker  # 重启docker服务

systemctl status docker  # 查看docker状态

在这里插入图片描述

启动成功, 然后输入命令,可以查看docker版本:

docker -v

如图:

在这里插入图片描述

1.4.6 配置镜像加速

docker官方镜像仓库网速较差,我们需要设置国内镜像服务:

参考阿里云的镜像加速文档:https://cr.console.aliyun.com/cn-hangzhou/instances/mirrors

sudo mkdir -p /etc/docker
sudo tee /etc/docker/daemon.json <<-'EOF'
{
  "registry-mirrors": ["https://929gbypy.mirror.aliyuncs.com"]
}
EOF
sudo systemctl daemon-reload
sudo systemctl restart docker

2.Docker的基本操作

2.1.镜像操作

2.1.1.镜像名称

首先来看下镜像的名称组成:

  • 镜名称一般分两部分组成:[repository]:[tag]。
  • 在没有指定tag时,默认是latest,代表最新版本的镜像

如图:

在这里插入图片描述

这里的mysql就是repository,5.7就是tag,合一起就是镜像名称,代表5.7版本的MySQL镜像。

2.1.2.镜像命令

常见的镜像操作命令如图:

在这里插入图片描述

2.1.3.案例1-拉取、查看镜像

需求:从DockerHub中拉取一个nginx镜像并查看

1)首先去镜像仓库搜索nginx镜像,比如DockerHub:
在这里插入图片描述

2)根据查看到的镜像名称,拉取自己需要的镜像,通过命令:docker pull nginx

在这里插入图片描述

3)通过命令:docker images 查看拉取到的镜像

在这里插入图片描述

2.1.4.案例2-保存、导入镜像

需求:利用docker save将nginx镜像导出磁盘,然后再通过load加载回来

1)利用docker xx --help命令查看docker save和docker load的语法

例如,查看save命令用法,可以输入命令:

docker save --help

结果:

在这里插入图片描述

命令格式:

docker save -o [保存的目标文件名称] [镜像名称]

2)使用docker save导出镜像到磁盘

运行命令:

docker save -o nginx.tar nginx:latest

结果如图:

在这里插入图片描述

3)使用docker load加载镜像

先删除本地的nginx镜像:

docker rmi nginx:latest

然后运行命令,加载本地文件:

docker load -i nginx.tar

结果:

在这里插入图片描述

2.1.5.练习

需求:去DockerHub搜索并拉取一个Redis镜像

目标:

1)去DockerHub搜索Redis镜像

2)查看Redis镜像的名称和版本

3)利用docker pull命令拉取镜像

4)利用docker save命令将 redis:latest打包为一个redis.tar包

5)利用docker rmi 删除本地的redis:latest

6)利用docker load 重新加载 redis.tar文件

2.2.容器操作

2.2.1.容器相关命令

容器操作的命令如图:

在这里插入图片描述

容器保护三个状态:

  • 运行:进程正常运行
  • 暂停:进程暂停,CPU不再运行,并不释放内存
  • 停止:进程终止,回收进程占用的内存、CPU等资源

其中:

  • docker run:创建并运行一个容器,处于运行状态

  • docker pause:让一个运行的容器暂停

  • docker unpause:让一个容器从暂停状态恢复运行

  • docker stop:停止一个运行的容器

  • docker start:让一个停止的容器再次运行

  • docker exec:进入容器执行命令

  • docker logs:查看容器运行日志

    • docker -f logs:持续查看容器运行日志
  • docker ps:查看所有运行的容器以及状态

  • docker rm:删除一个容器

2.2.2.案例-创建并运行一个容器

DockerHub上搜索nginx文档中可以看得到, 创建并运行nginx容器的命令:

docker run --name containerName -p 80:80 -d nginx

命令解读:

  • docker run :创建并运行一个容器
  • –name : 给容器起一个名字,比如叫做mn
  • -p :将宿主机端口与容器端口映射,冒号左侧是宿主机端口,右侧是容器端口
  • -d:后台运行容器
  • nginx:镜像名称,例如nginx

这里的-p参数,是将容器端口映射到宿主机端口。

默认情况下,容器是隔离环境,我们直接访问宿主机的80端口,肯定访问不到容器中的nginx。

现在,将容器的80与宿主机的80关联起来,当我们访问宿主机的80端口时,就会被映射到容器的80,这样就能访问到nginx了:

在这里插入图片描述

2.2.3.案例-进入容器,修改文件

需求:进入Nginx容器,修改HTML文件内容,添加“传智教育欢迎您”

提示:进入容器要用到docker exec命令。

步骤

1)进入容器。进入我们刚刚创建的nginx容器的命令为:

docker exec -it mn bash

命令解读:

  • docker exec :进入容器内部,执行一个命令

  • -it : 给当前进入的容器创建一个标准输入、输出终端,允许我们与容器交互

  • mn :要进入的容器的名称

  • bash:进入容器后执行的命令,bash是一个linux终端交互命令

2)进入nginx的HTML所在目录 /usr/share/nginx/html

容器内部会模拟一个独立的Linux文件系统,看起来如同一个linux服务器一样:

在这里插入图片描述

nginx的环境、配置、运行文件全部都在这个文件系统中,包括我们要修改的html文件。

查看DockerHub网站中的nginx页面,可以知道nginx的html目录位置在/usr/share/nginx/html

我们执行命令,进入该目录:

cd /usr/share/nginx/html

查看目录下文件:

在这里插入图片描述

3)修改index.html的内容

容器内没有vi命令,无法直接修改,我们用下面的命令来修改:

sed -i -e 's#Welcome to nginx#清华大学欢迎您#g' -e 's#<head>#<head><meta charset="utf-8">#g' index.html

在浏览器访问自己的虚拟机地址,例如我的是:http://192.168.208.128,即可看到结果:

在这里插入图片描述

2.2.4.小结

docker run命令的常见参数有哪些?

  • –name:指定容器名称
  • -p:指定端口映射
  • -d:让容器后台运行

查看容器日志的命令:

  • docker logs
  • 添加 -f 参数可以持续查看日志

查看容器状态:

  • docker ps
  • docker ps -a 查看所有容器,包括已经停止的

删除容器:

  • docker rm
  • 不能删除运行中的容器,除非添加-f参数,即docker rm -f

进入容器:

  • 命令是docker exec -it [容器名]{要执行的命令}
  • exec命令可以进入容器修改文件,但是在容器内修改文件是不推荐的

2.2.5 练习:创建并运行一个redis容器,并且支持数据持久化

步骤一:到DockerHub搜索Redis镜像
步骤二:查看Redis镜像文档中的帮助信息
docker pull redis

在这里插入图片描述

步骤三:利用docker run命令运行一个Redis容器
docker run --name mr -p 6379:6379 -d redis redis-server --save 60 1 --loglevel warning

成功连上:
在这里插入图片描述

进入redis容器

  • 方式一:
docker exec -it mr bash

再输入客户端命令:

redis-cli

测试:

keys * # 查看所有key

set mun 666 # 保存一个键为mun值为666的数据

在这里插入图片描述

  • 方式二:
docker exec -it mr redis-cli

测试:

keys * # 查看所有key

在这里插入图片描述

2.3.数据卷(容器数据管理)

在之前的nginx案例中,修改nginx的html页面时,需要进入nginx内部。并且因为没有编辑器,修改文件也很麻烦。

这就是因为容器与数据(容器内文件)耦合带来的后果。

在这里插入图片描述

要解决这个问题,必须将数据与容器解耦,这就要用到数据卷了。

2.3.1.什么是数据卷

**数据卷(volume)**是一个虚拟目录,指向宿主机文件系统中的某个目录。

在这里插入图片描述

一旦完成数据卷挂载,对容器的一切操作都会作用在数据卷对应的宿主机目录了。

这样,我们操作宿主机的/var/lib/docker/volumes/html目录,就等于操作容器内的/usr/share/nginx/html目录了

2.3.2.数据集操作命令

数据卷操作的基本语法如下:

docker volume [COMMAND]

docker volume命令是数据卷操作,根据命令后跟随的command来确定下一步的操作:

  • create 创建一个volume
  • inspect 显示一个或多个volume的信息
  • ls 列出所有的volume
  • prune 删除未使用的volume
  • rm 删除一个或多个指定的volume

2.3.3.创建和查看数据卷

需求:创建一个数据卷,并查看数据卷在宿主机的目录位置

① 创建数据卷

docker volume create html

② 查看所有数据

docker volume ls

结果:

在这里插入图片描述

③ 查看数据卷详细信息卷

docker volume inspect html

结果:

在这里插入图片描述

可以看到,我们创建的html这个数据卷关联的宿主机目录为/var/lib/docker/volumes/html/_data目录。

小结

数据卷的作用:

  • 将容器与数据分离,解耦合,方便操作容器内数据,保证数据安全

数据卷操作:

  • docker volume create:创建数据卷
  • docker volume ls:查看所有数据卷
  • docker volume inspect:查看数据卷详细信息,包括关联的宿主机目录位置
  • docker volume rm:删除指定数据卷
  • docker volume prune:删除所有未使用的数据卷

2.3.4.挂载数据卷

我们在创建容器时,可以通过 -v 参数来挂载一个数据卷到某个容器内目录,命令格式如下:

docker run \
  --name mn \
  -v html:/root/html \
  -p 8080:80
  nginx \

这里的-v就是挂载数据卷的命令:

  • -v html:/root/htm :把html数据卷挂载到容器内的/root/html这个目录中

2.3.5.案例-给nginx挂载数据卷

需求:创建一个nginx容器,修改容器内的html目录内的index.html内容

分析:上个案例中,我们进入nginx容器内部,已经知道nginx的html目录所在位置/usr/share/nginx/html ,我们需要把这个目录挂载到html这个数据卷上,方便操作其中的内容。

提示:运行容器时使用 -v 参数挂载数据卷

步骤:

① 创建容器并挂载数据卷到容器内的HTML目录

docker run --name mn -v html:/usr/share/nginx/html -p 80:80 -d nginx

② 进入html数据卷所在位置,并修改HTML内容

# 查看html数据卷的位置
docker volume inspect html
# 进入该目录
cd /var/lib/docker/volumes/html/_data
# 修改文件
vi index.html

在这里插入图片描述

在这里插入图片描述

2.3.6.案例-给MySQL挂载本地目录

容器不仅仅可以挂载数据卷,也可以直接挂载到宿主机目录上。关联关系如下:

  • 带数据卷模式:宿主机目录 --> 数据卷 —> 容器内目录
  • 直接挂载模式:宿主机目录 —> 容器内目录

如图:

在这里插入图片描述

语法

目录挂载与数据卷挂载的语法是类似的:

  • -v [宿主机目录]:[容器内目录]
  • -v [宿主机文件]:[容器内文件]

需求:docker安装创建并运行一个MySQL容器,将宿主机目录直接挂载到容器

实现思路如下:

1)在将课前资料中的mysql.tar文件上传到虚拟机,通过load命令加载为镜像

在这里插入图片描述

docker load -i mysql.tar

2)创建目录/tmp/mysql/data
在tmp文件夹下创建

mkdir -p mysql/data
mkdir -p mysql/conf

3)创建目录/tmp/mysql/conf,将课前资料提供的hmy.cnf文件上传到/tmp/mysql/conf
在这里插入图片描述

4)去DockerHub查阅资料,创建并运行MySQL容器,要求:
在这里插入图片描述
在这里插入图片描述

① 挂载/tmp/mysql/data到mysql容器内数据存储目录

② 挂载/tmp/mysql/conf/hmy.cnf到mysql容器的配置文件

③ 设置MySQL密码

docker run \
--name mysql \
-e MYSQL_ROOT_PASSWORD=root \
-p 3306:3306 \
-v /tmp/mysql/conf/hmy.cnf:/etc/mysql/conf.d/hmy.cnf \
-v /tmp/mysql/data:/var/lib/mysql \
-d mysql:5.7.25 \

在这里插入图片描述
在这里插入图片描述

2.3.7.小结

docker run的命令中通过 -v 参数挂载文件或目录到容器中:

  • -v volume名称:容器内目录
  • -v 宿主机文件:容器内文
  • -v 宿主机目录:容器内目录

数据卷挂载与目录直接挂载的

  • 数据卷挂载耦合度低,由docker来管理目录,但是目录较深,不好找
  • 目录挂载耦合度高,需要我们自己管理目录,不过目录容易寻找查看

3.Dockerfile自定义镜像

常见的镜像在DockerHub就能找到,但是我们自己写的项目就必须自己构建镜像了。

而要自定义镜像,就必须先了解镜像的结构才行。

3.1.镜像结构

镜像是将应用程序及其需要的系统函数库、环境、配置、依赖打包而成。

我们以MySQL为例,来看看镜像的组成结构:

在这里插入图片描述

简单来说,镜像就是在系统函数库、运行环境基础上,添加应用程序文件、配置文件、依赖文件等组合,然后编写好启动脚本打包在一起形成的文件。

我们要构建镜像,其实就是实现上述打包的过程。

3.2.Dockerfile语法

构建自定义的镜像时,并不需要一个个文件去拷贝,打包。

我们只需要告诉Docker,我们的镜像的组成,需要哪些BaseImage、需要拷贝什么文件、需要安装什么依赖、启动脚本是什么,将来Docker会帮助我们构建镜像。

而描述上述信息的文件就是Dockerfile文件。

Dockerfile就是一个文本文件,其中包含一个个的指令(Instruction),用指令来说明要执行什么操作来构建镜像。每一个指令都会形成一层Layer。

在这里插入图片描述

更新详细语法说明,请参考官网文档: https://docs.docker.com/engine/reference/builder

3.3.构建Java项目

3.3.1.基于Ubuntu构建Java项目

需求:基于Ubuntu镜像构建一个新镜像,运行一个java项目

  • 步骤1:新建一个空文件夹docker-demo
    在tmp文件夹下
mkdir docker-demo
  • 步骤2:拷贝课前资料中的docker-demo.jar文件到docker-demo这个目录
  • 步骤3:拷贝课前资料中的jdk8.tar.gz文件到docker-demo这个目录
  • 步骤4:拷贝课前资料提供的Dockerfile到docker-demo这个目录

在这里插入图片描述

其中dockerfile的内容如下:

  # 指定基础镜像
  FROM ubuntu:16.04
  # 配置环境变量,JDK的安装目录
  ENV JAVA_DIR=/usr/local
  
  # 拷贝jdk和java项目的包
  COPY ./jdk8.tar.gz $JAVA_DIR/
  COPY ./docker-demo.jar /tmp/app.jar
  
  # 安装JDK
  RUN cd $JAVA_DIR \
   && tar -xf ./jdk8.tar.gz \
   && mv ./jdk1.8.0_144 ./java8
  
  # 配置环境变量
  ENV JAVA_HOME=$JAVA_DIR/java8
  ENV PATH=$PATH:$JAVA_HOME/bin
  
  # 暴露端口
  EXPOSE 8090
  # 入口,java项目的启动命令
  ENTRYPOINT java -jar /tmp/app.jar
  • 步骤5:进入docker-demo

    将准备好的docker-demo上传到虚拟机任意目录,然后进入docker-demo目录下

  • 步骤6:运行命令:

docker build -t javaweb:1.0 .

其中"."表示当前目录
在这里插入图片描述
在这里插入图片描述

docker run --name web -p 8090:8090 -d javaweb:1.0

在这里插入图片描述
在这里插入图片描述

最后访问 http://192.168.208.128:8090/hello/count,其中的ip改成你的虚拟机ip
在这里插入图片描述

3.3.2.基于java8-alpine构建Java项目

虽然我们可以基于Ubuntu基础镜像,添加任意自己需要的安装包,构建镜像,但是却比较麻烦。所以大多数情况下,我们都可以在一些安装了部分软件的基础镜像上做改造。

例如,构建java项目的镜像,可以在已经准备了JDK的基础镜像基础上构建。

需求:基于java:8-alpine镜像,将一个Java项目构建为镜像

实现思路如下:

  • ① 新建一个空的目录,然后在目录中新建一个文件,命名为Dockerfile

  • ② 拷贝课前资料提供的docker-demo.jar到这个目录中

  • ③ 编写Dockerfile文件:

    • a )基于java:8-alpine作为基础镜像

    • b )将app.jar拷贝到镜像中

    • c )暴露端口

    • d )编写入口ENTRYPOINT

      内容如下:

      FROM java:8-alpine
      COPY ./app.jar /tmp/app.jar
      EXPOSE 8090
      ENTRYPOINT java -jar /tmp/app.jar
      
  • ④ 使用docker build命令构建镜像

docker build -t javaweb:2.0 .
  • ⑤ 使用docker run创建容器并运行
    停掉之前的web容器
docker rm -f web
docker run --name web -p 8090:8090 -d javaweb:2.0

3.4.小结

小结:

  1. Dockerfile的本质是一个文件,通过指令描述镜像的构建过程

  2. Dockerfile的第一行必须是FROM,从一个基础镜像来构建

  3. 基础镜像可以是基本操作系统,如Ubuntu。也可以是其他人制作好的镜像,例如:java:8-alpine

4.Docker-Compose

Docker Compose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器!

在这里插入图片描述

4.1.初识DockerCompose

Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。格式如下:

version: "3.8"
 services:
  mysql:
    image: mysql:5.7.25
    environment:
     MYSQL_ROOT_PASSWORD: 123 
    volumes:
     - "/tmp/mysql/data:/var/lib/mysql"
     - "/tmp/mysql/conf/hmy.cnf:/etc/mysql/conf.d/hmy.cnf"
  web:
    build: .
    ports:
     - "8090:8090"

上面的Compose文件就描述一个项目,其中包含两个容器:

  • mysql:一个基于mysql:5.7.25镜像构建的容器,并且挂载了两个目录
  • web:一个基于docker build临时构建的镜像容器,映射端口时8090

DockerCompose的详细语法参考官网:https://docs.docker.com/compose/compose-file/

其实DockerCompose文件可以看做是将多个docker run命令写到一个文件,只是语法稍有差异。

4.2 安装DockerCompose

4.2.1 CentOS7安装DockerCompose

4.2.2 下载

Linux下需要通过命令下载:

# 安装
curl -L https://github.com/docker/compose/releases/download/1.23.1/docker-compose-`uname -s`-`uname -m` > /usr/local/bin/docker-compose

如果下载速度较慢,或者下载失败,可以使用课前资料提供的docker-compose文件:
在这里插入图片描述

上传到/usr/local/bin/目录也可以。

4.2.3 修改文件权限

修改文件权限:

# 修改权限
chmod +x /usr/local/bin/docker-compose

4.2.4 Base自动补全命令:

# 补全命令
curl -L https://raw.githubusercontent.com/docker/compose/1.29.1/contrib/completion/bash/docker-compose > /etc/bash_completion.d/docker-compose

如果这里出现错误,需要修改自己的hosts文件:

echo "199.232.68.133 raw.githubusercontent.com" >> /etc/hosts

4.3.部署微服务集群

需求:将之前学习的cloud-demo微服务集群利用DockerCompose部署

实现思路

① 查看课前资料提供的cloud-demo文件夹,里面已经编写好了docker-compose文件

② 修改自己前面的cloud-demo项目,将数据库、nacos地址都命名为docker-compose中的服务名

③ 使用maven打包工具,将项目中的每个微服务都打包为app.jar

④ 将打包好的app.jar拷贝到cloud-demo中的每一个对应的子目录中

⑤ 将cloud-demo上传至虚拟机,利用 docker-compose up -d 来部署

4.3.1.compose文件

查看课前资料提供的cloud-demo文件夹,里面已经编写好了docker-compose文件,而且每个微服务都准备了一个独立的目录:

在这里插入图片描述

内容如下:

version: "3.2"

services:
  nacos:
    image: nacos/nacos-server
    environment:
      MODE: standalone
    ports:
      - "8848:8848"
  mysql:
    image: mysql:5.7.25
    environment:
      MYSQL_ROOT_PASSWORD: 123
    volumes:
      - "$PWD/mysql/data:/var/lib/mysql"
      - "$PWD/mysql/conf:/etc/mysql/conf.d/"
  userservice:
    build: ./user-service
  orderservice:
    build: ./order-service
  gateway:
    build: ./gateway
    ports:
      - "10010:10010"

可以看到,其中包含5个service服务:

  • nacos:作为注册中心和配置中心
    • image: nacos/nacos-server: 基于nacos/nacos-server镜像构建
    • environment:环境变量
      • MODE: standalone:单点模式启动
    • ports:端口映射,这里暴露了8848端口
  • mysql:数据库
    • image: mysql:5.7.25:镜像版本是mysql:5.7.25
    • environment:环境变量
      • MYSQL_ROOT_PASSWORD: 123:设置数据库root账户的密码为123
    • volumes:数据卷挂载,这里挂载了mysql的data、conf目录,其中有我提前准备好的数据
  • userserviceorderservicegateway:都是基于Dockerfile临时构建的

查看mysql目录,可以看到其中已经准备好了cloud_order、cloud_user表:

查看微服务目录,可以看到都包含Dockerfile文件:

内容如下:

FROM java:8-alpine
COPY ./app.jar /tmp/app.jar
ENTRYPOINT java -jar /tmp/app.jar

4.3.2.修改微服务配置

因为微服务将来要部署为docker容器,而容器之间互联不是通过IP地址,而是通过容器名。这里我们将order-service、user-service、gateway服务的mysql、nacos地址都修改为基于容器名的访问。

如下所示:

spring:
  datasource:
    url: jdbc:mysql://mysql:3306/cloud_order?useSSL=false
    username: root
    password: 123
    driver-class-name: com.mysql.jdbc.Driver
  application:
    name: orderservice
  cloud:
    nacos:
      server-addr: nacos:8848 # nacos服务地址

4.3.3.打包

接下来需要将我们的每个微服务都打包。因为之前查看到Dockerfile中的jar包名称都是app.jar,因此我们的每个微服务都需要用这个名称。

可以通过修改pom.xml中的打包名称来实现,每个微服务都需要修改:

<build>
  <!-- 服务打包的最终名称 -->
  <finalName>app</finalName>
  <plugins>
    <plugin>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-maven-plugin</artifactId>
    </plugin>
  </plugins>
</build>

打包后:

在这里插入图片描述

4.3.4.拷贝jar包到部署目录

编译打包好的app.jar文件,需要放到Dockerfile的同级目录中。注意:每个微服务的app.jar放到与服务名称对应的目录,别搞错了。

user-service:

在这里插入图片描述

order-service:
在这里插入图片描述

gateway:

在这里插入图片描述

4.3.5.部署

最后,我们需要将文件整个cloud-demo文件夹上传到虚拟机中,理由DockerCompose部署。

上传到任意目录:

在这里插入图片描述

部署:

进入cloud-demo目录,然后运行下面的命令:

docker-compose up -d

如果出现报错重启一下服务

docker-compose restart gateway userservice orderservice

在这里插入图片描述

5.Docker镜像仓库

5.1.搭建私有镜像仓库

5.1.1 Docker镜像仓库

搭建镜像仓库可以基于Docker官方提供的DockerRegistry来实现。

官网地址:https://hub.docker.com/_/registry

5.1.2 简化版镜像仓库

Docker官方的Docker Registry是一个基础版本的Docker镜像仓库,具备仓库管理的完整功能,但是没有图形化界面。

搭建方式比较简单,命令如下:

docker run -d \
    --restart=always \
    --name registry	\
    -p 5000:5000 \
    -v registry-data:/var/lib/registry \
    registry

命令中挂载了一个数据卷registry-data到容器内的/var/lib/registry 目录,这是私有镜像库存放数据的目录。

访问http://YourIp:5000/v2/_catalog 可以查看当前私有镜像服务中包含的镜像

5.1.3 带有图形化界面版本

使用DockerCompose部署带有图象界面的DockerRegistry,命令如下:
在tmp下创建

mkdir registry-ui
cd registry-ui/
touch docker-compose.yml

将以下复制到docker-compose.yml中

version: '3.0'
services:
  registry:
    image: registry
    volumes:
      - ./registry-data:/var/lib/registry
  ui:
    image: joxit/docker-registry-ui:static
    ports:
      - 8080:80
    environment:
      - REGISTRY_TITLE=清华大学私有仓库
      - REGISTRY_URL=http://registry:5000
    depends_on:
      - registry

配置Docker信任地址
参考下面的5.1.4
启动

docker-compose up -d

访问http://192.168.208.128:8080/

5.1.4 配置Docker信任地址

我们的私服采用的是http协议,默认不被Docker信任,所以需要做一个配置:

# 打开要修改的文件
vi /etc/docker/daemon.json
# 添加内容, 按i编辑, 粘贴后按esc输入":wq"保存并退出:
"insecure-registries":["http://192.168.208.128:8080"]
# 重加载
systemctl daemon-reload
# 重启docker
systemctl restart docker

5.2.推送、拉取镜像

推送镜像到私有镜像服务必须先tag,步骤如下:

① 重新tag本地镜像,名称前缀为私有仓库的地址:192.168.208.128:8080/

docker tag nginx:latest 192.168.208.128:8080/nginx:1.0 

② 推送镜像

docker push 192.168.208.128:8080/nginx:1.0 

③ 拉取镜像

docker pull 192.168.208.128:8080/nginx:1.0 

RabbitMQ

1.初识MQ

1.1.同步和异步通讯

微服务间通讯有同步和异步两种方式:

同步通讯:就像打电话,需要实时响应。

异步通讯:就像发邮件,不需要马上回复。

在这里插入图片描述

两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。

1.1.1.同步通讯

我们之前学习的Feign调用就属于同步方式,虽然调用可以实时得到结果,但存在下面的问题:
在这里插入图片描述

总结:

同步调用的优点:

  • 时效性较强,可以立即得到结果

同步调用的问题:

  • 耦合度高
  • 性能和吞吐能力下降
  • 有额外的资源消耗
  • 有级联失败问题

1.1.2.异步通讯

异步调用则可以避免上述问题:

我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。

在事件模式中,支付服务是事件发布者(publisher),在支付完成后只需要发布一个支付成功的事件(event),事件中带上订单id。

订单服务和物流服务是事件订阅者(Consumer),订阅支付成功的事件,监听到事件后完成自己业务即可。

为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间人(Broker)。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。
在这里插入图片描述

Broker 是一个像数据总线一样的东西,所有的服务要接收数据和发送数据都发到这个总线上,这个总线就像协议一样,让服务间的通讯变得标准和可控。

好处:

  • 吞吐量提升:无需等待订阅者处理完成,响应更快速

  • 故障隔离:服务没有直接调用,不存在级联失败问题

  • 调用间没有阻塞,不会造成无效的资源占用

  • 耦合度极低,每个服务都可以灵活插拔,可替换

  • 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件

缺点:

  • 架构复杂了,业务没有明显的流程线,不好管理
  • 需要依赖于Broker的可靠、安全、性能

好在现在开源软件或云平台上 Broker 的软件是非常成熟的,比较常见的一种就是我们今天要学习的MQ技术。

1.2.技术对比:

MQ,中文是消息队列(MessageQueue),字面来看就是存放消息的队列。也就是事件驱动架构中的Broker。

比较常见的MQ实现:

  • ActiveMQ
  • RabbitMQ
  • RocketMQ
  • Kafka

几种常见MQ的对比:

RabbitMQActiveMQRocketMQKafka
公司/社区RabbitApache阿里Apache
开发语言ErlangJavaJavaScala&Java
协议支持AMQP,XMPP,SMTP,STOMPOpenWire,STOMP,REST,XMPP,AMQP自定义协议自定义协议
可用性一般
单机吞吐量一般非常高
消息延迟微秒级毫秒级毫秒级毫秒以内
消息可靠性一般一般

追求可用性:Kafka、 RocketMQ 、RabbitMQ

追求可靠性:RabbitMQ、RocketMQ

追求吞吐能力:RocketMQ、Kafka

追求消息低延迟:RabbitMQ、Kafka

2.快速入门

RabbitMQ是基于Erlang语言开发的开源消息通信中间件,官网地址: https://www.rabbitmq.com/

2.1.安装RabbitMQ

2.1.1 安装RabbitMQ

0. RabbitMQ部署指南
1.单机部署

我们在Centos7虚拟机中使用Docker来安装。

1.1.下载镜像

方式一:在线拉取

docker pull rabbitmq:3.8-management

方式二:从本地加载

在课前资料已经提供了镜像包:

在这里插入图片描述

上传到虚拟机中后,使用命令加载镜像即可:

docker load -i mq.tar
1.2.安装MQ

执行下面的命令来运行MQ容器:

docker run \
 -e RABBITMQ_DEFAULT_USER=root \
 -e RABBITMQ_DEFAULT_PASS=123321 \
 --name mq \
 --hostname mq1 \
 -p 15672:15672 \
 -p 5672:5672 \
 -d \
 rabbitmq:3.8-management

docker run \
 -e RABBITMQ_DEFAULT_USER=root \
 -e RABBITMQ_DEFAULT_PASS=123321 \
 -v mq-plugins:/plugins \
 --name mq \
 --hostname mq1 \
 -p 15672:15672 \
 -p 5672:5672 \
 -d \
 rabbitmq:3.8-management

这里多了一个-v mq-plugins:/plugins挂载了插件目录
rabbitmq:这里是写镜像名称根据实际情况来定
如果出现以下警告
在这里插入图片描述
是因为IPv4转发被禁用了,只需要开启就可以了。

vim /etc/sysctl.conf

#配置转发
net.ipv4.ip_forward=1
#保存退出就可以了
:wq!
#重启服务,让配置生效
systemctl restart network

#查看是否成功,如果返回为“net.ipv4.ip_forward = 1”则表示成功

sysctl net.ipv4.ip_forward

在这里插入图片描述

在浏览器输入http://192.168.208.128:15672/,输入账号密码,ip换成自己的

在这里插入图片描述

2.集群部署

接下来,我们看看如何安装RabbitMQ的集群。

2.1.集群分类

在RabbitMQ的官方文档中,讲述了两种集群的配置方式:

  • 普通模式:普通模式集群不进行数据同步,每个MQ都有自己的队列、数据信息(其它元数据信息如交换机等会同步)。例如我们有2个MQ:mq1,和mq2,如果你的消息在mq1,而你连接到了mq2,那么mq2会去mq1拉取消息,然后返回给你。如果mq1宕机,消息就会丢失。
  • 镜像模式:与普通模式不同,队列会在各个mq的镜像节点之间同步,因此你连接到任何一个镜像节点,均可获取到消息。而且如果一个节点宕机,并不会导致数据丢失。不过,这种方式增加了数据同步的带宽消耗。

我们先来看普通模式集群。

2.2.设置网络

首先,我们需要让3台MQ互相知道对方的存在。

分别在3台机器中,设置 /etc/hosts文件,添加如下内容:

192.168.150.101 mq1
192.168.150.102 mq2
192.168.150.103 mq3

并在每台机器上测试,是否可以ping通对方:

2.1.2 MQ的基本结构:

在这里插入图片描述

2.1.3 RabbitMQ中的一些角色:

  • publisher:生产者
  • consumer:消费者
  • exchange个:交换机,负责消息路由
  • queue:队列,存储消息
  • virtualHost:虚拟主机,隔离不同租户的exchange、queue、消息的隔离

2.2.RabbitMQ消息模型

RabbitMQ官方提供了5个不同的Demo示例,对应了不同的消息模型:

在这里插入图片描述

2.3.导入Demo工程

课前资料提供了一个Demo工程,mq-demo:

在这里插入图片描述

导入后可以看到结构如下:

在这里插入图片描述

包括三部分:

  • mq-demo:父工程,管理项目依赖
  • publisher:消息的发送者
  • consumer:消息的消费者

2.4.入门案例

简单队列模式的模型图:

在这里插入图片描述

官方的HelloWorld是基于最基础的消息队列模型来实现的,只包括三个角色:

  • publisher:消息发布者,将消息发送到队列queue
  • queue:消息队列,负责接受并缓存消息
  • consumer:订阅队列,处理队列中的消息

2.4.1.publisher实现

思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 发送消息
  • 关闭连接和channel

代码实现:

import com.rabbitmq.client.Channel;
import com.rabbitmq.client.Connection;
import com.rabbitmq.client.ConnectionFactory;
import org.junit.Test;

import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class PublisherTest {
    @Test
    public void testSendMessage() throws IOException, TimeoutException {
        // 1.建立连接
        ConnectionFactory factory = new ConnectionFactory();
        // 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
        factory.setHost("127.0.0.1");
        factory.setPort(5672);
        factory.setVirtualHost("/");
        factory.setUsername("root");
        factory.setPassword("123321");
        // 1.2.建立连接
        Connection connection = factory.newConnection();

        // 2.创建通道Channel
        Channel channel = connection.createChannel();

        // 3.创建队列
        String queueName = "simple.queue";
        channel.queueDeclare(queueName, false, false, false, null);

        // 4.发送消息
        String message = "hello, rabbitmq!";
        channel.basicPublish("", queueName, null, message.getBytes());
        System.out.println("发送消息成功:【" + message + "】");

        // 5.关闭通道和连接
        channel.close();
        connection.close();

    }
}

2.4.2.consumer实现

代码思路:

  • 建立连接
  • 创建Channel
  • 声明队列
  • 订阅消息

代码实现:


import com.rabbitmq.client.*;

import java.io.IOException;
import java.util.concurrent.TimeoutException;

public class ConsumerTest {

    public static void main(String[] args) throws IOException, TimeoutException {
        // 1.建立连接
        ConnectionFactory factory = new ConnectionFactory();
        // 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码
        factory.setHost("127.0.0.1");
        factory.setPort(5672);
        factory.setVirtualHost("/");
        factory.setUsername("root");
        factory.setPassword("123321");
        // 1.2.建立连接
        Connection connection = factory.newConnection();

        // 2.创建通道Channel
        Channel channel = connection.createChannel();

        // 3.创建队列
        String queueName = "simple.queue";
        channel.queueDeclare(queueName, false, false, false, null);

        // 4.订阅消息
        channel.basicConsume(queueName, true, new DefaultConsumer(channel){
            @Override
            public void handleDelivery(String consumerTag, Envelope envelope,
                                       AMQP.BasicProperties properties, byte[] body) throws IOException {
                // 5.处理消息
                String message = new String(body);
                System.out.println("接收到消息:【" + message + "】");
            }
        });
        System.out.println("等待接收消息。。。。");
    }
}

2.5.总结

基本消息队列的消息发送流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 利用channel向队列发送消息

基本消息队列的消息接收流程:

  1. 建立connection

  2. 创建channel

  3. 利用channel声明队列

  4. 定义consumer的消费行为handleDelivery()

  5. 利用channel将消费者与队列绑定

3.SpringAMQP

SpringAMQP是基于RabbitMQ封装的一套模板,并且还利用SpringBoot对其实现了自动装配,使用起来非常方便。

SpringAmqp的官方地址:https://spring.io/projects/spring-amqp

在这里插入图片描述

在这里插入图片描述

SpringAMQP提供了三个功能:

  • 自动声明队列、交换机及其绑定关系
  • 基于注解的监听器模式,异步接收消息
  • 封装了RabbitTemplate工具,用于发送消息

3.1.Basic Queue 简单队列模型

在父工程mq-demo中引入依赖

<!--AMQP依赖,包含RabbitMQ-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

3.1.1.消息发送

首先配置MQ地址,在publisher服务的application.yml中添加配置:

spring:
  rabbitmq:
    host: 192.168.208.128 # 主机名
    port: 5672 # 端口
    virtual-host: / # 虚拟主机
    username: root # 用户名
    password: 123321 # 密码

然后在publisher服务中编写测试类SpringAmqpTest,并利用RabbitTemplate实现消息发送:


import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @Test
    public void testSimpleQueue() {
        // 队列名称
        String queueName = "simple.queue";
        // 消息
        String message = "hello, spring amqp!";
        // 发送消息
        rabbitTemplate.convertAndSend(queueName, message);
    }
}

3.1.2.消息接收

首先配置MQ地址,在consumer服务的application.yml中添加配置:

spring:
  rabbitmq:
    host: 192.168.208.128 # 主机名
    port: 5672 # 端口
    virtual-host: / # 虚拟主机
    username: root # 用户名
    password: 123321 # 密码

然后在consumer服务的cn.demo.mq.listener包中新建一个类SpringRabbitListener,代码如下:

import org.springframework.amqp.rabbit.annotation.RabbitListener;
import org.springframework.stereotype.Component;

@Component
public class SpringRabbitListener {

    @RabbitListener(queues = "simple.queue")
    public void listenSimpleQueueMessage(String msg) throws InterruptedException {
        System.out.println("spring 消费者接收到消息:【" + msg + "】");
    }
}

3.1.3.测试

启动consumer服务,然后在publisher服务中运行测试代码,发送MQ消息

3.2.WorkQueue

Work queues,也被称为(Task queues),任务模型。简单来说就是让多个消费者绑定到一个队列,共同消费队列中的消息

在这里插入图片描述

当消息处理比较耗时的时候,可能生产消息的速度会远远大于消息的消费速度。长此以往,消息就会堆积越来越多,无法及时处理。

此时就可以使用work 模型,多个消费者共同处理消息处理,速度就能大大提高了。

3.2.1.消息发送

这次我们循环发送,模拟大量消息堆积现象。

在publisher服务中的SpringAmqpTest类中添加一个测试方法:

/**
     * workQueue
     * 向队列中不停发送消息,模拟消息堆积。
     */
@Test
public void testWorkQueue() throws InterruptedException {
    // 队列名称
    String queueName = "simple.queue";
    // 消息
    String message = "hello, message_";
    for (int i = 0; i < 50; i++) {
        // 发送消息
        rabbitTemplate.convertAndSend(queueName, message + i);
        Thread.sleep(20);
    }
}

3.2.2.消息接收

要模拟多个消费者绑定同一个队列,我们在consumer服务的SpringRabbitListener中添加2个新的方法:

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue1(String msg) throws InterruptedException {
    System.out.println("消费者1接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(20);
}

@RabbitListener(queues = "simple.queue")
public void listenWorkQueue2(String msg) throws InterruptedException {
    System.err.println("消费者2........接收到消息:【" + msg + "】" + LocalTime.now());
    Thread.sleep(200);
}

注意到这个消费者sleep了1000秒,模拟任务耗时。

3.2.3.测试

启动ConsumerApplication后,在执行publisher服务中刚刚编写的发送测试方法testWorkQueue。

可以看到消费者1很快完成了自己的25条消息。消费者2却在缓慢的处理自己的25条消息。

也就是说消息是平均分配给每个消费者,并没有考虑到消费者的处理能力。这样显然是有问题的。

3.2.4.能者多劳

在spring中有一个简单的配置,可以解决这个问题。我们修改consumer服务的application.yml文件,添加配置:

spring:
  rabbitmq:
    listener:
      simple:
        prefetch: 1 # 每次只能获取一条消息,处理完成才能获取下一个消息

3.2.5.总结

Work模型的使用:

  • 多个消费者绑定到一个队列,同一条消息只会被一个消费者处理
  • 通过设置prefetch来控制消费者预取的消息数量

3.3.发布/订阅

发布订阅的模型如图:
在这里插入图片描述

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

  • Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)
  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:
    • Fanout:广播,将消息交给所有绑定到交换机的队列
    • Direct:定向,把消息交给符合指定routing key 的队列
    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列
  • Consumer:消费者,与以前一样,订阅队列,没有变化
  • Queue:消息队列也与以前一样,接收消息、缓存消息。

Exchange(交换机)只负责转发消息,不具备存储消息的能力,因此如果没有任何队列与Exchange绑定,或者没有符合路由规则的队列,那么消息会丢失!

3.4.Fanout交换机

Fanout,英文翻译是扇出,我觉得在MQ中叫广播更合适。

在这里插入图片描述

在广播模式下,消息发送流程是这样的:

  • 1) 可以有多个队列
  • 2) 每个队列都要绑定到Exchange(交换机)
  • 3) 生产者发送的消息,只能发送到交换机,交换机来决定要发给哪个队列,生产者无法决定
  • 4) 交换机把消息发送给绑定过的所有队列
  • 5) 订阅队列的消费者都能拿到消息

我们的计划是这样的:

  • 创建一个交换机 demo.fanout,类型是Fanout
  • 创建两个队列fanout.queue1和fanout.queue2,绑定到交换机demo.fanout

在这里插入图片描述

3.4.1.声明队列和交换机

Spring提供了一个接口Exchange,来表示所有不同类型的交换机:

在这里插入图片描述

在consumer中创建一个类,声明队列和交换机:


import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.FanoutExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration
public class FanoutConfig {
    /**
     * 声明交换机
     * @return Fanout类型交换机
     */
    @Bean
    public FanoutExchange fanoutExchange(){
        return new FanoutExchange("demo.fanout");
    }

    /**
     * 第1个队列
     */
    @Bean
    public Queue fanoutQueue1(){
        return new Queue("fanout.queue1");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue1(Queue fanoutQueue1, FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);
    }

    /**
     * 第2个队列
     */
    @Bean
    public Queue fanoutQueue2(){
        return new Queue("fanout.queue2");
    }

    /**
     * 绑定队列和交换机
     */
    @Bean
    public Binding bindingQueue2(Queue fanoutQueue2, FanoutExchange fanoutExchange){
        return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);
    }
}

3.4.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testFanoutExchange() {
    // 队列名称
    String exchangeName = "demo.fanout";
    // 消息
    String message = "hello, everyone!";
    rabbitTemplate.convertAndSend(exchangeName, "", message);
}

3.4.3.消息接收

在consumer服务的SpringRabbitListener中添加两个方法,作为消费者:

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg) {
    System.out.println("消费者1接收到Fanout消息:【" + msg + "】");
}

@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg) {
    System.out.println("消费者2接收到Fanout消息:【" + msg + "】");
}

3.4.4.总结

交换机的作用是什么?

  • 接收publisher发送的消息
  • 将消息按照规则路由到与之绑定的队列
  • 不能缓存消息,路由失败,消息丢失
  • FanoutExchange的会将消息路由到每个绑定的队列

声明队列、交换机、绑定关系的Bean是什么?

  • Queue
  • FanoutExchange
  • Binding

3.5.Direct交换机

在Fanout模式中,一条消息,会被所有订阅的队列都消费。但是,在某些场景下,我们希望不同的消息被不同的队列消费。这时就要用到Direct类型的Exchange。

在这里插入图片描述

在Direct模型下:

  • 队列与交换机的绑定,不能是任意绑定了,而是要指定一个RoutingKey(路由key)
  • 消息的发送方在 向 Exchange发送消息时,也必须指定消息的 RoutingKey
  • Exchange不再把消息交给每一个绑定的队列,而是根据消息的Routing Key进行判断,只有队列的Routingkey与消息的 Routing key完全一致,才会接收到消息

案例需求如下

  1. 利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听direct.queue1和direct.queue2

  3. 在publisher中编写测试方法,向demo. direct发送消息

在这里插入图片描述

3.5.1.基于注解声明队列和交换机

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。

在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue1"),
    exchange = @Exchange(name = "demo.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "blue"}
))
public void listenDirectQueue1(String msg){
    System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "direct.queue2"),
    exchange = @Exchange(name = "demo.direct", type = ExchangeTypes.DIRECT),
    key = {"red", "yellow"}
))
public void listenDirectQueue2(String msg){
    System.out.println("消费者接收到direct.queue2的消息:【" + msg + "】");
}

3.5.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

@Test
public void testSendDirectExchange() {
    // 交换机名称
    String exchangeName = "demo.direct";
    // 消息
    String message = "红色警报!日本乱排核废水,导致海洋生物变异,惊现哥斯拉!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "red", message);
}

3.5.3.总结

描述下Direct交换机与Fanout交换机的差异?

  • Fanout交换机将消息路由给每一个与之绑定的队列
  • Direct交换机根据RoutingKey判断路由给哪个队列
  • 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?

  • @Queue
  • @Exchange

3.6.Topic交换机

3.6.1.说明

Topic类型的ExchangeDirect相比,都是可以根据RoutingKey把消息路由到不同的队列。只不过Topic类型Exchange可以让队列在绑定Routing key 的时候使用通配符!

Routingkey 一般都是有一个或多个单词组成,多个单词之间以”.”分割,例如: item.insert

通配符规则:

#:匹配一个或多个词

*:匹配不多不少恰好1个词

举例:

item.#:能够匹配item.spu.insert 或者 item.spu

item.*:只能匹配item.spu

图示:

在这里插入图片描述

解释:

  • Queue1:绑定的是china.# ,因此凡是以 china.开头的routing key 都会被匹配到。包括china.news和china.weather
  • Queue2:绑定的是#.news ,因此凡是以 .news结尾的 routing key 都会被匹配。包括china.news和japan.news

案例需求:

实现思路如下:

  1. 并利用@RabbitListener声明Exchange、Queue、RoutingKey

  2. 在consumer服务中,编写两个消费者方法,分别监听topic.queue1和topic.queue2

  3. 在publisher中编写测试方法,向demo. topic发送消息

在这里插入图片描述

3.6.2.消息发送

在publisher服务的SpringAmqpTest类中添加测试方法:

/**
     * topicExchange
     */
@Test
public void testSendTopicExchange() {
    // 交换机名称
    String exchangeName = "demo.topic";
    // 消息
    String message = "喜报!孙悟空大战哥斯拉,胜!";
    // 发送消息
    rabbitTemplate.convertAndSend(exchangeName, "china.news", message);
}

3.6.3.消息接收

在consumer服务的SpringRabbitListener中添加方法:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "topic.queue1"),
    exchange = @Exchange(name = "demo.topic", type = ExchangeTypes.TOPIC),
    key = "china.#"
))
public void listenTopicQueue1(String msg){
    System.out.println("消费者接收到topic.queue1的消息:【" + msg + "】");
}

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "topic.queue2"),
    exchange = @Exchange(name = "demo.topic", type = ExchangeTypes.TOPIC),
    key = "#.news"
))
public void listenTopicQueue2(String msg){
    System.out.println("消费者接收到topic.queue2的消息:【" + msg + "】");
}

3.6.4.总结

描述下Direct交换机与Topic交换机的差异?

  • Topic交换机接收的消息RoutingKey必须是多个单词,以 **.** 分割
  • Topic交换机与队列绑定时的bindingKey可以指定通配符
  • #:代表0个或多个词
  • *:代表1个词

3.7.消息转换器

之前说过,Spring会把你发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。

在这里插入图片描述

只不过,默认情况下Spring采用的序列化方式是JDK序列化。众所周知,JDK序列化存在下列问题:

  • 数据体积过大
  • 有安全漏洞
  • 可读性差

我们来测试一下。

3.7.1.测试默认转换器

我们修改消息发送的代码,发送一个Map对象:

@Test
public void testSendMap() throws InterruptedException {
    // 准备消息
    Map<String,Object> msg = new HashMap<>();
    msg.put("name", "Jack");
    msg.put("age", 21);
    // 发送消息
    rabbitTemplate.convertAndSend("simple.queue","", msg);
}

停止consumer服务

发送消息后查看控制台:

在这里插入图片描述

3.7.2.配置JSON转换器

显然,JDK序列化方式并不合适。我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

在publisher和consumer两个服务中都引入依赖:

<dependency>
    <groupId>com.fasterxml.jackson.dataformat</groupId>
    <artifactId>jackson-dataformat-xml</artifactId>
    <version>2.9.10</version>
</dependency>

配置消息转换器。

在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){
    return new Jackson2JsonMessageConverter();
}

分布式搜索引擎01

– elasticsearch基础

1.初识elasticsearch

1.1.了解ES

1.1.1.elasticsearch的作用

elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

例如:

  • 在GitHub搜索代码

在这里插入图片描述

  • 在电商网站搜索商品
    在这里插入图片描述

  • 在百度搜索答案

在这里插入图片描述

  • 在打车软件搜索附近的车

在这里插入图片描述

1.1.2.ELK技术栈

elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
在这里插入图片描述

而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

在这里插入图片描述

1.1.3.elasticsearch和lucene

elasticsearch底层是基于lucene来实现的。

Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/

在这里插入图片描述

elasticsearch的发展历史:

  • 2004年Shay Banon基于Lucene开发了Compass
  • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

在这里插入图片描述

1.1.4.为什么不是其他搜索技术?

目前比较知名的搜索引擎技术排名:

在这里插入图片描述

虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
在这里插入图片描述

1.1.5.总结

什么是elasticsearch?

  • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

什么是elastic stack(ELK)?

  • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

什么是Lucene?

  • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

1.2.倒排索引

倒排索引的概念是基于MySQL这样的正向索引而言的。

1.2.1.正向索引

那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

在这里插入图片描述

如果是根据id查询,那么直接走索引,查询速度非常快。

但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是title符合"%手机%"

2)逐行获取数据,比如id为1的数据

3)判断数据中的title是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤1

逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

1.2.2.倒排索引

倒排索引中有两个非常重要的概念:

  • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
  • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

创建倒排索引是对正向索引的一种特殊处理,流程如下:

  • 将每一个文档的数据利用算法分词,得到一个个词条
  • 创建表,每行数据包括词条、词条所在文档id、位置等信息
  • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

如图:

在这里插入图片描述

倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。

4)拿着文档id到正向索引中查找具体文档。

如图:

在这里插入图在这里插入图片描述
片描述

虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

1.2.3.正向和倒排

那么为什么一个叫做正向索引,一个叫做倒排索引呢?

  • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

  • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

是不是恰好反过来了?

那么两者方式的优缺点是什么呢?

正向索引

  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。

倒排索引

  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

1.3.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.3.1.文档和字段

elasticsearch是面向**文档(Document)**存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

在这里插入图片描述

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.3.2.索引和映射

索引(Index),就是相同类型的文档的集合。

例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

在这里插入图片描述

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?

并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

1.4.安装es、kibana

1.4.1. 安装elasticsearch

1.部署单点es
1.1.创建网络

因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:

docker network create es-net
1.2.加载镜像

这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。

docker pull elasticsearch:7.12.1

课前资料提供了镜像的tar包:

在这里插入图片描述

大家将其上传到虚拟机中,然后运行命令加载即可:

# 导入数据
docker load -i es.tar

同理还有kibana的tar包也需要这样做。

1.3.运行

运行docker命令,部署单点es:

docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1

命令解释:

  • -e "cluster.name=es-docker-cluster":设置集群名称
  • -e "http.host=0.0.0.0":监听的地址,可以外网访问
  • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
  • -e "discovery.type=single-node":非集群模式
  • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
  • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
  • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
  • --privileged:授予逻辑卷访问权
  • --network es-net :加入一个名为es-net的网络中
  • -p 9200:9200:端口映射配置

在浏览器中输入:http://192.168.208.128:9200 即可看到elasticsearch的响应结果:

在这里插入图片描述

2.部署kibana

kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。

2.1.部署

运行docker命令,部署kibana

docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601  \
kibana:7.12.1
  • --network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
  • -e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
  • -p 5601:5601:端口映射配置

kibana启动一般比较慢,需要多等待一会,可以通过命令:

docker logs -f kibana

查看运行日志,当查看到下面的日志,说明成功:

在这里插入图片描述

此时,在浏览器输入地址访问:http://192.168.208.128:5601,即可看到结果
会提示让你导入数据,我们选择第二个
在这里插入图片描述

2.2.DevTools

kibana中提供了一个DevTools界面:
在这里插入图片描述

在这里插入图片描述

这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。

1.4.2.分词器

1. 安装IK分词器
1.1.在线安装ik插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch
1.2.离线安装ik插件(推荐)
1)查看数据卷目录

安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:

docker volume inspect es-plugins

显示结果:

[
    {
        "CreatedAt": "2022-07-05T17:40:30+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]

说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。

2)解压缩分词器安装包

下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
在这里插入图片描述

3)上传到es容器的插件数据卷中

也就是/var/lib/docker/volumes/es-plugins/_data

在这里插入图片描述

4)重启容器
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
5)测试:

IK分词器包含两种模式:

  • ik_smart:最少切分,分出来大小比较小,能存更多数据

  • ik_max_word:最细切分,分出来大小比较大

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "在清华大学学习java太棒了"
}

结果:

在这里插入图片描述

1.3 扩展词词典

随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。

所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。

1)打开IK分词器config目录:

在这里插入图片描述

2)在IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
        <!--用户可以在这里配置自己的扩展停止词字典 去掉敏感词-->
		<entry key="ext_stopwords">stopword.dic</entry>
		<!--用户可以在这里配置远程扩展字典 -->
		<!-- <entry key="remote_ext_dict">words_location</entry> -->
		<!--用户可以在这里配置远程扩展停止词字典-->
		<!-- <entry key="remote_ext_stopwords">words_location</entry> -->
</properties>

3)新建一个ext.dic,可以参考config目录下复制一个配置文件进行修改

嘤嘤嘤
奥力给
白嫖

在stopword.dic中添加

在
的
了
哦
啊
嗯

在这里插入图片描述

4)重启elasticsearch

docker restart es

# 查看 日志
docker logs -f elasticsearch

在这里插入图片描述

日志中已经成功加载ext.dic配置文件

5)测试效果:

# 测试分词器
GET /_analyze
{
  "analyzer": "ik_smart",
  "text": "在清华大学学习的java太棒了白嫖的知识,奥力给哦!"
}
{
  "tokens" : [
    {
      "token" : "在",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "清华大学",
      "start_offset" : 1,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 8,
      "end_offset" : 12,
      "type" : "ENGLISH",
      "position" : 3
    },
    {
      "token" : "太棒了",
      "start_offset" : 12,
      "end_offset" : 15,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "白嫖",
      "start_offset" : 15,
      "end_offset" : 17,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "知识",
      "start_offset" : 18,
      "end_offset" : 20,
      "type" : "CN_WORD",
      "position" : 6
    },
    {
      "token" : "奥力给",
      "start_offset" : 21,
      "end_offset" : 24,
      "type" : "CN_WORD",
      "position" : 7
    }
  ]
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

1.4 停用词词典

在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。

IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

1)IKAnalyzer.cfg.xml配置文件内容添加:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>

3)在 stopword.dic 添加停用词

小老头

4)重启elasticsearch

# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch

日志中已经成功加载stopword.dic配置文件

5)测试效果:

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小老头都点赞,奥力给!"
}

注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。

我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
    • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
    • 数值:long、integer、short、byte、double、float、
    • 布尔:boolean
    • 日期:date
    • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{
    "age": 21,
    "weight": 52.1,
    "isMarried": false,
    "info": "清华Java讲师",
    "email": "zy@qq.cn",
    "score": [99.1, 99.5, 98.9],
    "name": {
        "firstName": "云",
        "lastName": "赵"
    }
}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
    • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
    • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1.创建索引库和映射

基本语法:
  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称
{
  "mappings": {
    "properties": {
      "字段名":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "字段名2":{
        "type": "keyword",
        "index": "false"
      },
      "字段名3":{
        "properties": {
          "子字段": {
            "type": "keyword"
          }
        }
      },
      // ...略
    }
  }
}
示例:
PUT /user
{
  "mappings": {
    "properties": {
      "info":{
        "type": "text",
        "analyzer": "ik_smart"
      },
      "email":{
        "type": "keyword",
        "index": "falsae"
      },
      "name":{
        "properties": {
          "firstName": {
            "type": "keyword"
          }
        }
      },
      // ... 略
    }
  }
}

2.2.2.查询索引库

基本语法

  • 请求方式:GET

  • 请求路径:/索引库名

  • 请求参数:无

格式

GET /索引库名

示例

在这里插入图片描述

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping
{
  "properties": {
    "新字段名":{
      "type": "integer"
    }
  }
}

示例

PUT /user/_mapping
{
  "properties":{
    "age":{
      "type":"integer"
    }
  }
}

2.2.4.删除索引库

语法:

  • 请求方式:DELETE

  • 请求路径:/索引库名

  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

DELETE /user

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    "字段3": {
        "子属性1": "值3",
        "子属性2": "值4"
    },
    // ...
}

示例:

POST /user/_doc/1
{
    "info": "清华Java讲师",
    "email": "zy@qq.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    },
    "age":18
}

响应:
在这里插入图片描述

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /user/_doc/1

查看结果:
在这里插入图片描述

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据
DELETE /user/_doc/1

结果:

在这里插入图片描述

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id
{
    "字段1": "值1",
    "字段2": "值2",
    // ... 略
}

示例:

# 修改文档内容
PUT /user/_doc/1
{
    "info": "北京高级Java讲师",
    "email": "zy@163.cn",
    "name": {
        "firstName": "云",
        "lastName": "赵"
    },
    "age":20
}

在这里插入图片描述

3.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id
{
    "doc": {
         "字段名": "新的值",
    }
}

示例:

POST /user/_update/1
{
  "doc": {
    "email": "ZhaoYun@163.cn"
  }
}

在这里插入图片描述

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
    • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
    • 增量修改:POST /{索引库名}/_update/文档id { “doc”: {字段}}

4.RestClient操作数据库

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

在这里插入图片描述

我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

4.0.1.导入数据

首先导入数据库数据,数据结构如下:

CREATE TABLE `tb_hotel` (
  `id` bigint(20) NOT NULL COMMENT '酒店id',
  `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',
  `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',
  `price` int(10) NOT NULL COMMENT '酒店价格;例:329',
  `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',
  `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',
  `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',
  `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',
  `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',
  `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',
  `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',
  `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.0.2.导入项目

然后导入课前资料提供的项目:

在这里插入图片描述

项目结构如图:
在这里插入图片描述

4.0.3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel
{
  "mappings": {
    "properties": {
      "id": {
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "ik_max_word",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword",
        "copy_to": "all"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "ik_max_word"
      }
    }
  }
}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:
在这里插入图片描述

copy_to说明:

在这里插入图片描述

4.0.4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>
    <groupId>org.elasticsearch.client</groupId>
    <artifactId>elasticsearch-rest-high-level-client</artifactId>
</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>
    <java.version>1.8</java.version>
    <elasticsearch.version>7.12.1</elasticsearch.version>
</properties>

3)初始化RestHighLevelClient:

初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.208.128:9200")
));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:


public class HotelIndexTest {
    private RestHighLevelClient client;
    @Test
    void testInit() {
        System.out.println(client);
    }
    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.208.128:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

成功运行testInit()测试成功!

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:

在这里插入图片描述

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.1.2.完整示例

在hotel-demo的cn.demo.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

public class HotelConstants {
    public static final String MAPPING_TEMPLATE = "{\n" +
            "  \"mappings\": {\n" +
            "    \"properties\": {\n" +
            "      \"id\": {\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"name\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"address\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"price\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"score\":{\n" +
            "        \"type\": \"integer\"\n" +
            "      },\n" +
            "      \"brand\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"city\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"copy_to\": \"all\"\n" +
            "      },\n" +
            "      \"starName\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"business\":{\n" +
            "        \"type\": \"keyword\"\n" +
            "      },\n" +
            "      \"location\":{\n" +
            "        \"type\": \"geo_point\"\n" +
            "      },\n" +
            "      \"pic\":{\n" +
            "        \"type\": \"keyword\",\n" +
            "        \"index\": false\n" +
            "      },\n" +
            "      \"all\":{\n" +
            "        \"type\": \"text\",\n" +
            "        \"analyzer\": \"ik_max_word\"\n" +
            "      }\n" +
            "    }\n" +
            "  }\n" +
            "}";
}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test
void createHotelIndex() throws IOException {
    // 1.创建Request对象
    CreateIndexRequest request = new CreateIndexRequest("hotel");
    // 2.准备请求的参数:DSL语句
    request.source(MAPPING_TEMPLATE, XContentType.JSON);
    // 3.发送请求
    client.indices().create(request, RequestOptions.DEFAULT);
}

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test
void testDeleteHotelIndex() throws IOException {
    // 1.创建Request对象
    DeleteIndexRequest request = new DeleteIndexRequest("hotel");
    // 2.发送请求
    client.indices().delete(request, RequestOptions.DEFAULT);
}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法
@Test
void testExistsHotelIndex() throws IOException {
    // 1.创建Request对象
    GetIndexRequest request = new GetIndexRequest("hotel");
    // 2.发送请求
    boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);
    // 3.输出
    System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");
}

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5.RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口
@SpringBootTest
public class HotelDocumentTest {
    @Autowired
    private IHotelService hotelService;

    private RestHighLevelClient client;

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.150.101:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data
@TableName("tb_hotel")
public class Hotel {
    @TableId(type = IdType.INPUT)
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String longitude;
    private String latitude;
    private String pic;
}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:


import lombok.Data;
import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();//合并
        this.pic = hotel.getPic();
    }
}

5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1
{
    "name": "Jack",
    "age": 21
}

对应的java代码如图:

在这里插入图片描述

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Autowired
private IHotelService hotelService;

@Test
void testAddDocument() throws IOException {
    // 1.根据id查询酒店数据
    Hotel hotel = hotelService.getById(61083L);
    // 2.转换为文档类型
    HotelDoc hotelDoc = new HotelDoc(hotel);
    // 3.将HotelDoc转json
    String json = JSON.toJSONString(hotelDoc);

    // 1.准备Request对象
    IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
    // 2.准备Json文档
    request.source(json, XContentType.JSON);
    // 3.发送请求
    client.index(request, RequestOptions.DEFAULT);
}

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

在这里插入图片描述

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testGetDocumentById() throws IOException {
    // 1.准备Request
    GetRequest request = new GetRequest("hotel", "61083");
    // 2.发送请求,得到响应
    GetResponse response = client.get(request, RequestOptions.DEFAULT);
    // 3.解析响应结果
    String json = response.getSourceAsString();

    HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
    System.out.println(hotelDoc);
}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testDeleteDocument() throws IOException {
    // 1.准备Request
    DeleteRequest request = new DeleteRequest("hotel", "61083");
    // 2.发送请求
    client.delete(request, RequestOptions.DEFAULT);
}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

在这里插入图片描述

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testUpdateDocument() throws IOException {
    // 1.准备Request
    UpdateRequest request = new UpdateRequest("hotel", "61083");
    // 2.准备请求参数
    request.doc(
        "price", "952",
        "starName", "四钻"
    );
    // 3.发送请求
    client.update(request, RequestOptions.DEFAULT);
}

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据

  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

其中提供了一个add方法,用来添加其他请求:

在这里插入图片描述

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

在这里插入图片描述

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test
void testBulkRequest() throws IOException {
    // 批量查询酒店数据
    List<Hotel> hotels = hotelService.list();

    // 1.创建Request
    BulkRequest request = new BulkRequest();
    // 2.准备参数,添加多个新增的Request
    for (Hotel hotel : hotels) {
        // 2.1.转换为文档类型HotelDoc
        HotelDoc hotelDoc = new HotelDoc(hotel);
        // 2.2.创建新增文档的Request对象
        request.add(new IndexRequest("hotel")
                    .id(hotelDoc.getId().toString())
                    .source(JSON.toJSONString(hotelDoc), XContentType.JSON));
    }
    // 3.发送请求
    client.bulk(request, RequestOptions.DEFAULT);
}
GET /hotel/_search

在这里插入图片描述

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)

分布式搜索引擎02

在昨天的学习中,我们已经导入了大量数据到elasticsearch中,实现了elasticsearch的数据存储功能。但elasticsearch最擅长的还是搜索和数据分析。

所以今天,我们研究下elasticsearch的数据搜索功能。我们会分别使用DSLRestClient实现搜索。

1.DSL查询文档

elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1.DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用。例如:match_all

  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

    • match_query
    • multi_match_query
  • 精确查询:根据精确词条值查找数据,一般是查找keyword、数值、日期、boolean等类型字段。例如:

    • ids
    • range
    • term
  • 地理(geo)查询:根据经纬度查询。例如:

    • geo_distance
    • geo_bounding_box
  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件。例如:

    • bool
    • function_score

查询的语法基本一致:

GET /indexName/_search
{
  "query": {
    "查询类型": {
      "查询条件": "条件值"
    }
  }
}

我们以查询所有为例,其中:

  • 查询类型为match_all
  • 没有查询条件
// 查询所有
GET /indexName/_search
{
  "query": {
    "match_all": {
    }
  }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条
  • 根据词条去倒排索引库中匹配,得到文档id
  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索
  • 百度输入框搜索

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询
  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

# 查询所有
GET /hotel/_search
{
  "query": {
    "match_all": {}
  }
}
GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}



mulit_match语法如下:

```json
GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}
# multi_match查询
GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query": "外滩如家",
      "fields": ["brand","name","business"]
    }
  }
}

1.2.3.示例

match查询示例:

在这里插入图片描述

multi_match查询示例:

在这里插入图片描述

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询
  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3.精准查询

精确查询一般是查找keyword、数值、日期、boolean等类型字段。所以不会对搜索条件分词。常见的有:

  • term:根据词条精确值查询
  • range:根据值的范围查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

# term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}
# term查询
GET /hotel/_search
{
  "query": {
    "term": {
      "city": {
        "value": "上海"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

在这里插入图片描述

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

在这里插入图片描述

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

# range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}
# range查询
GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "gte": 1000,
        "lte": 3000
      }
    }
  }
}

示例:

在这里插入图片描述

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段
  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:https://www.elastic.co/guide/en/elasticsearch/reference/current/geo-queries.html

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

常见的使用场景包括:

  • 携程:搜索我附近的酒店
  • 滴滴:搜索我附近的出租车
  • 微信:搜索我附近的人

附近的酒店:

在这里插入图片描述

附近的车:

在这里插入图片描述

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

在这里插入图片描述

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}
# geo_bounding_box查询
GET /hotel/_search
{
  "query": {
    "geo_bounding_box": {
      "location": {
        "top_left": { 
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { 
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

在这里插入图片描述

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

# geo_distance 查询
GET /hotel/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}
# geo_distance 查询
GET /hotel/_search
{
  "query": {
    "geo_distance":{
      "distance":"15km",
      "location":"31.21,121.5"
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

在这里插入图片描述

发现共有47家酒店。

然后把半径缩短到3公里:

在这里插入图片描述

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名
  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 “虹桥如家”,结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

在这里插入图片描述

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

在这里插入图片描述

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

在这里插入图片描述

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法
  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

在这里插入图片描述

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)
  • 过滤条件:filter部分,符合该条件的文档才会重新算分
  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数
    • weight:函数结果是常量
    • field_value_factor:以文档中的某个字段值作为函数结果
    • random_score:以随机数作为函数结果
    • script_score:自定义算分函数算法
  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:
    • multiply:相乘
    • replace:用function score替换query score
    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)
  • 2)根据过滤条件,过滤文档
  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)
  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改
  • 算分函数:决定函数算分的算法
  • 运算模式:决定最终算分结果
2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化
  • 过滤条件:brand = “如家”
  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight
  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}
GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {
        "match": {
          "all": "外滩"
        }
      }, 
      "functions": [
        {
          "filter": { 
            "term": {
              "brand": "如家"
            }
          },
          "weight": 10 
        }
      ],
      "boost_mode": "sum"  
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

在这里插入图片描述

添加了算分函数后,如家得分就提升了:
在这里插入图片描述

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”
  • should:选择性匹配子查询,类似“或”
  • must_not:必须不匹配,不参与算分,类似“非”
  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

在这里插入图片描述

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分
  • 其它过滤条件,采用filter查询。不参与算分
1)语法示例:
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {"term": {"city": "上海" }}
      ],
      "should": [
        {"term": {"brand": "皇冠假日" }},
        {"term": {"brand": "华美达" }}
      ],
      "must_not": [
        { "range": { "price": { "lte": 500 } }}
      ],
      "filter": [
        { "range": {"score": { "gte": 45 } }}
      ]
    }
  }
}
2)练习

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中
  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中
  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

在这里插入图片描述

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”
  • should:选择性匹配的条件,可以理解为“或”
  • must_not:必须不匹配的条件,不参与打分
  • filter:必须匹配的条件,不参与打分

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

练习

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

# sort排序
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "score": "desc"
    },
    {
      "price": "asc"
    }
  ]
}

在这里插入图片描述

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点
  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少
  • 根据距离排序

练习:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

假设我的位置是:121.6021,31.207236,寻找我周围距离最近的酒店。

# sort排序121.6021,31.207236
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance": {
        "location": {
          "lat": 31.207236,
          "lon": 121.6021
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ]
}

在这里插入图片描述

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始
  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

# 分页
GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

在这里插入图片描述

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

在这里插入图片描述

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页
    • 缺点:深度分页问题,默认查询上限(from + size)是10000
    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:只能向后逐页查询,不支持随机翻页
    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)
    • 缺点:会有额外内存消耗,并且搜索结果是非实时的
    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

在这里插入图片描述

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签
  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

# 分页+高亮查询,默认情况下,es搜索字段必须与高亮字段一致
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  },
  "highlight": {
    "fields": {
      "name": {
        "require_field_match": "false"
      }
    }
  }
}

在这里插入图片描述

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件
  • from和size:分页条件
  • sort:排序条件
  • highlight:高亮条件

示例:

GET /hotel/_search
{
  "query": {
    "match": {
      "name": "如家"
    }
  },
  "from": 0,
  "size": 20, 
  "sort": [
    {
      "price": "asc"
    },
    {
      "_geo_distance": {
        "location": {
          "lat": 31.040699,
          "lon": 121.618075
        },
        "order": "asc",
        "unit": "km"
      }
    }
  ],
  "highlight": {
    "fields": {
      "name": {
        "pre_tags": "<em>",
        "post_tags": "</em>"
      }
    }
  }
}

在这里插入图片描述

3.RestClient查询文档

文档的查询同样适用昨天学习的 RestHighLevelClient对象,基本步骤包括:

  • 1)准备Request对象
  • 2)准备请求参数
  • 3)发起请求
  • 4)解析响应

3.1.快速入门

我们以match_all查询为例

3.1.1.发起查询请求

在这里插入图片描述

public class HotelSearchTest {
    private RestHighLevelClient client;

    @Test
    void testMatchAll() throws IOException {
        //1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        //2. 准备DSL
        request.source().query(QueryBuilders.matchAllQuery());
        //3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        System.out.println(response);
    }

    @BeforeEach
    void setUp() {
        this.client = new RestHighLevelClient(RestClient.builder(
                HttpHost.create("http://192.168.208.128:9200")
        ));
    }

    @AfterEach
    void tearDown() throws IOException {
        this.client.close();
    }
}

代码解读:

  • 第一步,创建SearchRequest对象,指定索引库名

  • 第二步,利用request.source()构建DSL,DSL中可以包含查询、分页、排序、高亮等

    • query():代表查询条件,利用QueryBuilders.matchAllQuery()构建一个match_all查询的DSL
  • 第三步,利用client.search()发送请求,得到响应

这里关键的API有两个,一个是request.source(),其中包含了查询、排序、分页、高亮等所有功能:
在这里插入图片描述

另一个是QueryBuilders,其中包含match、term、function_score、bool等各种查询:
在这里插入图片描述

3.1.2.解析响应

响应结果的解析:

在这里插入图片描述

@Test
    void testMatchAll() throws IOException {
        //1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        //2. 准备DSL
        request.source().query(QueryBuilders.matchAllQuery());
        //3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);

        //4.解析响应
        SearchHits searchHits = response.getHits();
        //4.1 获取总条数
        long totel = searchHits.getTotalHits().value;
        System.out.println("共搜索到"+totel+"条数据");
        //4.2文档数组
        SearchHit[] hits = searchHits.getHits();
        //4.3遍历
        for (SearchHit hit : hits) {
            //获取文档source
            String json = hit.getSourceAsString();
            //反序列化
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            System.out.println("hotelDoc = " + hotelDoc);
        }

        System.out.println(response);
    }

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • _source:文档中的原始数据,也是json对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • SearchHits:通过response.getHits()获取,就是JSON中的最外层的hits,代表命中的结果
    • SearchHits#getTotalHits().value:获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组
      • SearchHit#getSourceAsString():获取文档结果中的_source,也就是原始的json文档数据

3.1.3.完整代码

完整代码如下:

@Test
void testMatchAll() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchAllQuery());
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);

    // 4.解析响应
    handleResponse(response);
}

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

3.1.4.小结

查询的基本步骤是:

  1. 创建SearchRequest对象

  2. 准备Request.source(),也就是DSL。

    ① QueryBuilders来构建查询条件

    ② 传入Request.source() 的 query() 方法

  3. 发送请求,得到结果

  4. 解析结果(参考JSON结果,从外到内,逐层解析)

3.2.match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

在这里插入图片描述

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

在这里插入图片描述

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

@Test
void testMatch() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    request.source()
        .query(QueryBuilders.matchQuery("all", "如家"));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.3.精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

查询条件构造的API如下:

在这里插入图片描述

3.4.布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

在这里插入图片描述

可以看到,API与其它查询的差别同样是在查询条件的构建,QueryBuilders,结果解析等其他代码完全不变。

完整代码如下:

@Test
void testBool() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.准备BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.2.添加term
    boolQuery.must(QueryBuilders.termQuery("city", "上海"));
    // 2.3.添加range
    boolQuery.filter(QueryBuilders.rangeQuery("price").lte(250));

    request.source().query(boolQuery);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.5.排序、分页

搜索结果的排序和分页是与query同级的参数,因此同样是使用request.source()来设置。

对应的API如下:

在这里插入图片描述

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

3.6.1.高亮请求构建

高亮请求的构建API如下:

在这里插入图片描述

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

@Test
void testHighlight() throws IOException {
    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchQuery("all", "如家"));
    // 2.2.高亮
    request.source().highlighter(new HighlightBuilder().field("name").requireFieldMatch(false));
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

3.6.2.高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

因此解析高亮的代码需要额外处理:

在这里插入图片描述

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

4.黑马旅游案例

下面,我们通过黑马旅游的案例来实战演练下之前学习的知识。

我们实现四部分功能:

  • 酒店搜索和分页
  • 酒店结果过滤
  • 我周边的酒店
  • 酒店竞价排名

启动我们提供的hotel-demo项目,其默认端口是8089,访问http://localhost:8090,就能看到项目页面了:

在这里插入图片描述

4.1.酒店搜索和分页

案例需求:实现黑马旅游的酒店搜索功能,完成关键字搜索和分页

4.1.1.需求分析

在项目的首页,有一个大大的搜索框,还有分页按钮:

在这里插入图片描述

点击搜索按钮,可以看到浏览器控制台发出了请求:

在这里插入图片描述

请求参数如下:

在这里插入图片描述

由此可以知道,我们这个请求的信息如下:

  • 请求方式:POST
  • 请求路径:/hotel/list
  • 请求参数:JSON对象,包含4个字段:
    • key:搜索关键字
    • page:页码
    • size:每页大小
    • sortBy:排序,目前暂不实现
  • 返回值:分页查询,需要返回分页结果PageResult,包含两个属性:
    • total:总条数
    • List<HotelDoc>:当前页的数据

因此,我们实现业务的流程如下:

  • 步骤一:定义实体类,接收请求参数的JSON对象
  • 步骤二:编写controller,接收页面的请求
  • 步骤三:编写业务实现,利用RestHighLevelClient实现搜索、分页

4.1.2.定义实体类

实体类有两个,一个是前端的请求参数实体,一个是服务端应该返回的响应结果实体。

1)请求参数

前端请求的json结构如下:

{
    "key": "搜索关键字",
    "page": 1,
    "size": 3,
    "sortBy": "default"
}

因此,我们在cn.demo.hotel.pojo包下定义一个实体类:

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
}

2)返回值

分页查询,需要返回分页结果PageResult,包含两个属性:

  • total:总条数
  • List<HotelDoc>:当前页的数据

因此,我们在cn.demo.hotel.pojo中定义返回结果:


@Data
public class PageResult {
    private Long total;
    private List<HotelDoc> hotels;

    public PageResult() {
    }

    public PageResult(Long total, List<HotelDoc> hotels) {
        this.total = total;
        this.hotels = hotels;
    }
}

4.1.3.定义controller

定义一个HotelController,声明查询接口,满足下列要求:

  • 请求方式:Post
  • 请求路径:/hotel/list
  • 请求参数:对象,类型为RequestParam
  • 返回值:PageResult,包含两个属性
    • Long total:总条数
    • List<HotelDoc> hotels:酒店数据

因此,我们在cn.demo.hotel.web中定义HotelController:

@RestController
@RequestMapping("/hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;
	// 搜索酒店数据
    @PostMapping("/list")
    public PageResult search(@RequestBody RequestParams params){
        return hotelService.search(params);
    }
}

4.1.4.实现搜索业务

我们在controller调用了IHotelService,并没有实现该方法,因此下面我们就在IHotelService中定义方法,并且去实现业务逻辑。

1)在cn.demo.hotel.service中的IHotelService接口中定义一个方法:

/**
 * 根据关键字搜索酒店信息
 * @param params 请求参数对象,包含用户输入的关键字 
 * @return 酒店文档列表
 */
PageResult search(RequestParams params);

2)实现搜索业务,肯定离不开RestHighLevelClient,我们需要把它注册到Spring中作为一个Bean。在cn.demo.hotel中的HotelDemoApplication中声明这个Bean:

@Bean
public RestHighLevelClient client(){
    return  new RestHighLevelClient(RestClient.builder(
        HttpHost.create("http://192.168.208.128:9200")
    ));
}

3)在cn.demo.hotel.service.impl中的HotelService中实现search方法:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        String key = params.getKey();
        if (key == null || "".equals(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }

        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);

        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

// 结果解析
private PageResult handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    List<HotelDoc> hotels = new ArrayList<>();
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
		// 放入集合
        hotels.add(hotelDoc);
    }
    // 4.4.封装返回
    return new PageResult(total, hotels);
}

4.2.酒店结果过滤

需求:添加品牌、城市、星级、价格等过滤功能

4.2.1.需求分析

在页面搜索框下面,会有一些过滤项:

在这里插入图片描述

传递的参数如图:

在这里插入图片描述

包含的过滤条件有:

  • brand:品牌值
  • city:城市
  • minPrice~maxPrice:价格范围
  • starName:星级

我们需要做两件事情:

  • 修改请求参数的对象RequestParams,接收上述参数
  • 修改业务逻辑,在搜索条件之外,添加一些过滤条件

4.2.2.修改实体类

修改在cn.demo.hotel.pojo包下的实体类RequestParams:

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    // 下面是新增的过滤条件参数
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
}

4.2.3.修改搜索业务

在HotelService的search方法中,只有一个地方需要修改:requet.source().query( … )其中的查询条件。

在之前的业务中,只有match查询,根据关键字搜索,现在要添加条件过滤,包括:

  • 品牌过滤:是keyword类型,用term查询
  • 星级过滤:是keyword类型,用term查询
  • 价格过滤:是数值类型,用range查询
  • 城市过滤:是keyword类型,用term查询

多个查询条件组合,肯定是boolean查询来组合:

  • 关键字搜索放到must中,参与算分
  • 其它过滤条件放到filter中,不参与算分

因为条件构建的逻辑比较复杂,这里先封装为一个函数:

在这里插入图片描述

buildBasicQuery的代码如下:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 2.关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 3.城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 4.品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 5.星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
	// 6.价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }
	// 7.放入source
    request.source().query(boolQuery);
}

完整:

@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {
    @Autowired
    private RestHighLevelClient client;

    @Override
    public PageResult search(RequestParams params) {
        try {
            //1.准备Request
            SearchRequest request = new SearchRequest("hotel");
            //2. 准备DSL
            //2.1准备query

            buildBasicQuery(params, request);
            //2.2分页
            int page = params.getPage();
            int size = params.getSize();
            request.source().from((page - 1) * size).size(size);
            //3.发送请求
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);

            handleResponse(response);
            return handleResponse(response);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    private void buildBasicQuery(RequestParams params, SearchRequest request) {
        // 1.构建BooleanQuery
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
        // 2.关键字搜索
        String key = params.getKey();
        if (key == null || "".equals(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }
        // 3.城市条件
        if (params.getCity() != null && !params.getCity().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
        }
        // 4.品牌条件
        if (params.getBrand() != null && !params.getBrand().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
        }
        // 5.星级条件
        if (params.getStarName() != null && !params.getStarName().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
        }
        // 6.价格
        if (params.getMinPrice() != null && params.getMaxPrice() != null) {
            boolQuery.filter(QueryBuilders
                    .rangeQuery("price")
                    .gte(params.getMinPrice())
                    .lte(params.getMaxPrice())
            );
        }
        // 7.放入source
        request.source().query(boolQuery);
    }

    private PageResult handleResponse(SearchResponse response) {
        // 4.解析响应
        SearchHits searchHits = response.getHits();
        // 4.1.获取总条数
        long total = searchHits.getTotalHits().value;
        // 4.2.文档数组
        SearchHit[] hits = searchHits.getHits();
        // 4.3.遍历
        List<HotelDoc> hotels = new ArrayList<>();
        for (SearchHit hit : hits) {
            // 获取文档source
            String json = hit.getSourceAsString();
            // 反序列化
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            // 放入集合
            hotels.add(hotelDoc);
        }
        // 4.4.封装返回
        return new PageResult(total, hotels);
    }

}

4.3.我周边的酒店

需求:我附近的酒店

4.3.1.需求分析

在酒店列表页的右侧,有一个小地图,点击地图的定位按钮,地图会找到你所在的位置:
在这里插入图片描述

并且,在前端会发起查询请求,将你的坐标发送到服务端:

在这里插入图片描述

我们要做的事情就是基于这个location坐标,然后按照距离对周围酒店排序。实现思路如下:

  • 修改RequestParams参数,接收location字段
  • 修改search方法业务逻辑,如果location有值,添加根据geo_distance排序的功能

4.3.2.修改实体类

修改在cn.demo.hotel.pojo包下的实体类RequestParams:

@Data
public class RequestParams {
    private String key;
    private Integer page;
    private Integer size;
    private String sortBy;
    private String city;
    private String brand;
    private String starName;
    private Integer minPrice;
    private Integer maxPrice;
    // 我当前的地理坐标
    private String location;
}

4.3.3.距离排序API

我们以前学习过排序功能,包括两种:

  • 普通字段排序
  • 地理坐标排序

我们只讲了普通字段排序对应的java写法。地理坐标排序只学过DSL语法,如下:

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "price": "asc"  
    },
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度",
          "order" : "asc",
          "unit" : "km"
      }
    }
  ]
}

对应的java代码示例:

在这里插入图片描述

4.3.4.添加距离排序

cn.demo.hotel.service.implHotelServicesearch方法中,添加一个排序功能:

在这里插入图片描述

完整代码:

@Override
public PageResult search(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);

        // 2.2.分页
        int page = params.getPage();
        int size = params.getSize();
        request.source().from((page - 1) * size).size(size);

        // 2.3.排序
        String location = params.getLocation();
        if (location != null && !location.equals("")) {
            request.source().sort(SortBuilders
                                  .geoDistanceSort("location", new GeoPoint(location))
                                  .order(SortOrder.ASC)
                                  .unit(DistanceUnit.KILOMETERS)
                                 );
        }

        // 3.发送请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析响应
        return handleResponse(response);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

4.3.5.排序距离显示

重启服务后,测试我的酒店功能:

在这里插入图片描述

发现确实可以实现对我附近酒店的排序,不过并没有看到酒店到底距离我多远,这该怎么办?

排序完成后,页面还要获取我附近每个酒店的具体距离值,这个值在响应结果中是独立的:

在这里插入图片描述

因此,我们在结果解析阶段,除了解析source部分以外,还要得到sort部分,也就是排序的距离,然后放到响应结果中。

我们要做两件事:

  • 修改HotelDoc,添加排序距离字段,用于页面显示
  • 修改HotelService类中的handleResponse方法,添加对sort值的获取

1)修改HotelDoc类,添加距离字段

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    // 排序时的 距离值
    private Object distance;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
    }
}

2)修改HotelService中的handleResponse方法

在这里插入图片描述

重启后测试,发现页面能成功显示距离了:

在这里插入图片描述

完整:

@Service
public class HotelService extends ServiceImpl<HotelMapper, Hotel> implements IHotelService {
    @Autowired
    private RestHighLevelClient client;

    @Override
    public PageResult search(RequestParams params) {
        try {
            // 1.准备Request
            SearchRequest request = new SearchRequest("hotel");
            // 2.准备DSL
            // 2.1.query
            buildBasicQuery(params, request);

            // 2.2.分页
            int page = params.getPage();
            int size = params.getSize();
            request.source().from((page - 1) * size).size(size);

            // 2.3.排序
            String location = params.getLocation();
            if (location != null && !location.equals("")) {
                request.source().sort(SortBuilders
                        .geoDistanceSort("location", new GeoPoint(location))
                        .order(SortOrder.ASC)
                        .unit(DistanceUnit.KILOMETERS)
                );
            }

            // 3.发送请求
            SearchResponse response = client.search(request, RequestOptions.DEFAULT);
            // 4.解析响应
            return handleResponse(response);
        } catch (IOException e) {
            throw new RuntimeException(e);
        }
    }

    private void buildBasicQuery(RequestParams params, SearchRequest request) {
        // 1.构建BooleanQuery
        BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
        // 2.关键字搜索
        String key = params.getKey();
        if (key == null || "".equals(key)) {
            boolQuery.must(QueryBuilders.matchAllQuery());
        } else {
            boolQuery.must(QueryBuilders.matchQuery("all", key));
        }
        // 3.城市条件
        if (params.getCity() != null && !params.getCity().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
        }
        // 4.品牌条件
        if (params.getBrand() != null && !params.getBrand().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
        }
        // 5.星级条件
        if (params.getStarName() != null && !params.getStarName().equals("")) {
            boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
        }
        // 6.价格
        if (params.getMinPrice() != null && params.getMaxPrice() != null) {
            boolQuery.filter(QueryBuilders
                    .rangeQuery("price")
                    .gte(params.getMinPrice())
                    .lte(params.getMaxPrice())
            );
        }
        // 7.放入source
        request.source().query(boolQuery);
    }

    private PageResult handleResponse(SearchResponse response) {
        // 4.解析响应
        SearchHits searchHits = response.getHits();
        // 4.1.获取总条数
        long total = searchHits.getTotalHits().value;
        // 4.2.文档数组
        SearchHit[] hits = searchHits.getHits();
        // 4.3.遍历
        List<HotelDoc> hotels = new ArrayList<>();
        for (SearchHit hit : hits) {
            // 获取文档source
            String json = hit.getSourceAsString();
            // 反序列化
            HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
            //获取排序值
            Object[] sortValues = hit.getSortValues();
            if (sortValues.length > 0) {
                Object sortValue = sortValues[0];
                hotelDoc.setDistance(sortValue);
            }
            // 放入集合
            hotels.add(hotelDoc);
        }
        // 4.4.封装返回
        return new PageResult(total, hotels);
    }

}

4.4.酒店竞价排名

需求:让指定的酒店在搜索结果中排名置顶

4.4.1.需求分析

要让指定酒店在搜索结果中排名置顶,效果如图:
在这里插入图片描述

页面会给指定的酒店添加广告标记。

那怎样才能让指定的酒店排名置顶呢?

我们之前学习过的function_score查询可以影响算分,算分高了,自然排名也就高了。而function_score包含3个要素:

  • 过滤条件:哪些文档要加分
  • 算分函数:如何计算function score
  • 加权方式:function score 与 query score如何运算

这里的需求是:让指定酒店排名靠前。因此我们需要给这些酒店添加一个标记,这样在过滤条件中就可以根据这个标记来判断,是否要提高算分

比如,我们给酒店添加一个字段:isAD,Boolean类型:

  • true:是广告
  • false:不是广告

这样function_score包含3个要素就很好确定了:

  • 过滤条件:判断isAD 是否为true
  • 算分函数:我们可以用最简单暴力的weight,固定加权值
  • 加权方式:可以用默认的相乘,大大提高算分

因此,业务的实现步骤包括:

  1. 给HotelDoc类添加isAD字段,Boolean类型

  2. 挑选几个你喜欢的酒店,给它的文档数据添加isAD字段,值为true

  3. 修改search方法,添加function score功能,给isAD值为true的酒店增加权重

4.4.2.修改HotelDoc实体

cn.demo.hotel.pojo包下的HotelDoc类添加isAD字段:

在这里插入图片描述

private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    //添加
    private Boolean isAD;

4.4.3.添加广告标记

接下来,我们挑几个酒店,添加isAD字段,设置为true:

POST /hotel/_update/309208
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056126831
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/1989806195
{
    "doc": {
        "isAD": true
    }
}
POST /hotel/_update/2056105938
{
    "doc": {
        "isAD": true
    }
}

4.4.4.添加算分函数查询

接下来我们就要修改查询条件了。之前是用的boolean 查询,现在要改成function_socre查询。

function_score查询结构如下:
在这里插入图片描述

对应的JavaAPI如下:

在这里插入图片描述

我们可以将之前写的boolean查询作为原始查询条件放到query中,接下来就是添加过滤条件算分函数加权模式了。所以原来的代码依然可以沿用。

修改cn.demo.hotel.service.impl包下的HotelService类中的buildBasicQuery方法,添加算分函数查询:

private void buildBasicQuery(RequestParams params, SearchRequest request) {
    // 1.构建BooleanQuery
    BoolQueryBuilder boolQuery = QueryBuilders.boolQuery();
    // 关键字搜索
    String key = params.getKey();
    if (key == null || "".equals(key)) {
        boolQuery.must(QueryBuilders.matchAllQuery());
    } else {
        boolQuery.must(QueryBuilders.matchQuery("all", key));
    }
    // 城市条件
    if (params.getCity() != null && !params.getCity().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("city", params.getCity()));
    }
    // 品牌条件
    if (params.getBrand() != null && !params.getBrand().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("brand", params.getBrand()));
    }
    // 星级条件
    if (params.getStarName() != null && !params.getStarName().equals("")) {
        boolQuery.filter(QueryBuilders.termQuery("starName", params.getStarName()));
    }
    // 价格
    if (params.getMinPrice() != null && params.getMaxPrice() != null) {
        boolQuery.filter(QueryBuilders
                         .rangeQuery("price")
                         .gte(params.getMinPrice())
                         .lte(params.getMaxPrice())
                        );
    }

    // 2.算分控制
    FunctionScoreQueryBuilder functionScoreQuery =
        QueryBuilders.functionScoreQuery(
        // 原始查询,相关性算分的查询
        boolQuery,
        // function score的数组
        new FunctionScoreQueryBuilder.FilterFunctionBuilder[]{
            // 其中的一个function score 元素
            new FunctionScoreQueryBuilder.FilterFunctionBuilder(
                // 过滤条件
                QueryBuilders.termQuery("isAD", true),
                // 算分函数
                ScoreFunctionBuilders.weightFactorFunction(10)
            )
        });
    request.source().query(functionScoreQuery);
}

分布式搜索引擎03

1.数据聚合

**聚合(aggregations**可以让我们极其方便的实现对数据的统计、分析、运算。例如:

  • 什么品牌的手机最受欢迎?
  • 这些手机的平均价格、最高价格、最低价格?
  • 这些手机每月的销售情况如何?

实现这些统计功能的比数据库的sql要方便的多,而且查询速度非常快,可以实现近实时搜索效果。

1.1.聚合的种类

聚合常见的有三类:

  • **桶(Bucket)**聚合:用来对文档做分组

    • TermAggregation:按照文档字段值分组,例如按照品牌值分组、按照国家分组
    • Date Histogram:按照日期阶梯分组,例如一周为一组,或者一月为一组
  • **度量(Metric)**聚合:用以计算一些值,比如:最大值、最小值、平均值等

    • Avg:求平均值
    • Max:求最大值
    • Min:求最小值
    • Stats:同时求max、min、avg、sum等
  • **管道(pipeline)**聚合:其它聚合的结果为基础做聚合

**注意:**参加聚合的字段必须是keyword、日期、数值、布尔类型

1.2.DSL实现聚合

现在,我们要统计所有数据中的酒店品牌有几种,其实就是按照品牌对数据分组。此时可以根据酒店品牌的名称做聚合,也就是Bucket聚合。

1.2.1.Bucket聚合语法

语法如下:

GET /hotel/_search
{
  "size": 0,  // 设置size为0,结果中不包含文档,只包含聚合结果
  "aggs": { // 定义聚合
    "brandAgg": { //给聚合起个名字
      "terms": { // 聚合的类型,按照品牌值聚合,所以选择term
        "field": "brand", // 参与聚合的字段
        "size": 20 // 希望获取的聚合结果数量
      }
    }
  }
}

结果如图:

在这里插入图片描述

1.2.2.聚合结果排序

默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。

我们可以指定order属性,自定义聚合的排序方式:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "order": {
          "_count": "asc" // 按照_count升序排列
        },
        "size": 20
      }
    }
  }
}

1.2.3.限定聚合范围

默认情况下,Bucket聚合是对索引库的所有文档做聚合,但真实场景下,用户会输入搜索条件,因此聚合必须是对搜索结果聚合。那么聚合必须添加限定条件。

我们可以限定要聚合的文档范围,只要添加query条件即可:

GET /hotel/_search
{
  "query": {
    "range": {
      "price": {
        "lte": 200 // 只对200元以下的文档聚合
      }
    }
  }, 
  "size": 0, 
  "aggs": {
    "brandAgg": {
      "terms": {
        "field": "brand",
        "size": 20
      }
    }
  }
}

这次,聚合得到的品牌明显变少了:

在这里插入图片描述

1.2.4.Metric聚合语法

上节课,我们对酒店按照品牌分组,形成了一个个桶。现在我们需要对桶内的酒店做运算,获取每个品牌的用户评分的min、max、avg等值。

这就要用到Metric聚合了,例如stat聚合:就可以获取min、max、avg等结果。

语法如下:

GET /hotel/_search
{
  "size": 0, 
  "aggs": {
    "brandAgg": { 
      "terms": { 
        "field": "brand", 
        "size": 20
      },
      "aggs": { // 是brands聚合的子聚合,也就是分组后对每组分别计算
        "score_stats": { // 聚合名称
          "stats": { // 聚合类型,这里stats可以计算min、max、avg等
            "field": "score" // 聚合字段,这里是score
          }
        }
      }
    }
  }
}

这次的score_stats聚合是在brandAgg的聚合内部嵌套的子聚合。因为我们需要在每个桶分别计算。

另外,我们还可以给聚合结果做个排序,例如按照每个桶的酒店平均分做排序:

在这里插入图片描述

1.2.5.小结

aggs代表聚合,与query同级,此时query的作用是?

  • 限定聚合的的文档范围

聚合必须的三要素:

  • 聚合名称
  • 聚合类型
  • 聚合字段

聚合可配置属性有:

  • size:指定聚合结果数量
  • order:指定聚合结果排序方式
  • field:指定聚合字段

1.3.RestAPI实现聚合

1.3.1.API语法

聚合条件与query条件同级别,因此需要使用request.source()来指定聚合条件。

聚合条件的语法:
在这里插入图片描述

聚合的结果也与查询结果不同,API也比较特殊。不过同样是JSON逐层解析:

在这里插入图片描述
HotelSearchTest中添加以下测试

@Test
    void testAggregation() throws IOException {
        //1.准备request
        SearchRequest request = new SearchRequest("hotel");
        //2.准备DSL
        //2.1设置size
        request.source().size(0);
        //2.2聚合
        request.source().aggregation(AggregationBuilders
                .terms("brandAgg")
                .field("brand")
                .size(10)
        );
        //3.发出请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        //4.解析结果
        Aggregations aggregations = response.getAggregations();
        //4.1根据聚合名称获取聚合结果
        Terms brandAgg = aggregations.get("brandAgg");
        //4.2获取buckets
        List<? extends Terms.Bucket> buckets = brandAgg.getBuckets();
        //4.3遍历
        for (Terms.Bucket bucket : buckets) {
            //4.4获取key
            String keyAsString = bucket.getKeyAsString();
            System.out.println("keyAsString = " + keyAsString);
        }


    }

1.3.2.业务需求

需求:搜索页面的品牌、城市等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的:

在这里插入图片描述

分析:

目前,页面的城市列表、星级列表、品牌列表都是写死的,并不会随着搜索结果的变化而变化。但是用户搜索条件改变时,搜索结果会跟着变化。

例如:用户搜索“东方明珠”,那搜索的酒店肯定是在上海东方明珠附近,因此,城市只能是上海,此时城市列表中就不应该显示北京、深圳、杭州这些信息了。

也就是说,搜索结果中包含哪些城市,页面就应该列出哪些城市;搜索结果中包含哪些品牌,页面就应该列出哪些品牌。

如何得知搜索结果中包含哪些品牌?如何得知搜索结果中包含哪些城市?

使用聚合功能,利用Bucket聚合,对搜索结果中的文档基于品牌分组、基于城市分组,就能得知包含哪些品牌、哪些城市了。

因为是对搜索结果聚合,因此聚合是限定范围的聚合,也就是说聚合的限定条件跟搜索文档的条件一致。

查看浏览器可以发现,前端其实已经发出了这样的一个请求:

在这里插入图片描述

请求参数与搜索文档的参数完全一致

返回值类型就是页面要展示的最终结果:

在这里插入图片描述

结果是一个Map结构:

  • key是字符串,城市、星级、品牌、价格
  • value是集合,例如多个城市的名称

1.3.3.业务实现

cn.demo.hotel.web包的HotelController中添加一个方法,遵循下面的要求:

  • 请求方式:POST
  • 请求路径:/hotel/filters
  • 请求参数:RequestParams,与搜索文档的参数一致
  • 返回值类型:Map<String, List<String>>

代码:

    @PostMapping("/filters")
    public Map<String, List<String>> getFilters(@RequestBody RequestParams params){
        return hotelService.getFilters(params);
    }

这里调用了IHotelService中的getFilters方法,尚未实现。

cn.demo.hotel.service.IHotelService中定义新方法:

Map<String, List<String>> filters(RequestParams params);

cn.demo.hotel.service.impl.HotelService中实现该方法:

@Override
public Map<String, List<String>> filters(RequestParams params) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        // 2.1.query
        buildBasicQuery(params, request);
        // 2.2.设置size
        request.source().size(0);
        // 2.3.聚合
        buildAggregation(request);
        // 3.发出请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Map<String, List<String>> result = new HashMap<>();
        Aggregations aggregations = response.getAggregations();
        // 4.1.根据品牌名称,获取品牌结果
        List<String> brandList = getAggByName(aggregations, "brandAgg");
        result.put("品牌", brandList);
        // 4.2.根据品牌名称,获取品牌结果
        List<String> cityList = getAggByName(aggregations, "cityAgg");
        result.put("城市", cityList);
        // 4.3.根据品牌名称,获取品牌结果
        List<String> starList = getAggByName(aggregations, "starAgg");
        result.put("星级", starList);

        return result;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

private void buildAggregation(SearchRequest request) {
    request.source().aggregation(AggregationBuilders
                                 .terms("brandAgg")
                                 .field("brand")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("cityAgg")
                                 .field("city")
                                 .size(100)
                                );
    request.source().aggregation(AggregationBuilders
                                 .terms("starAgg")
                                 .field("starName")
                                 .size(100)
                                );
}

private List<String> getAggByName(Aggregations aggregations, String aggName) {
    // 4.1.根据聚合名称获取聚合结果
    Terms brandTerms = aggregations.get(aggName);
    // 4.2.获取buckets
    List<? extends Terms.Bucket> buckets = brandTerms.getBuckets();
    // 4.3.遍历
    List<String> brandList = new ArrayList<>();
    for (Terms.Bucket bucket : buckets) {
        // 4.4.获取key
        String key = bucket.getKeyAsString();
        brandList.add(key);
    }
    return brandList;
}

2.自动补全

当用户在搜索框输入字符时,我们应该提示出与该字符有关的搜索项,如图:

在这里插入图片描述

这种根据用户输入的字母,提示完整词条的功能,就是自动补全了。

因为需要根据拼音字母来推断,因此要用到拼音分词功能。

2.1.拼音分词器

要实现根据字母做补全,就必须对文档按照拼音分词。在GitHub上恰好有elasticsearch的拼音分词插件。地址:https://github.com/medcl/elasticsearch-analysis-pinyin

在这里插入图片描述

课前资料中也提供了拼音分词器的安装包:

在这里插入图片描述

安装方式与IK分词器一样,分三步:

​ ①解压

​ ②上传到虚拟机中,elasticsearch的plugin目录

​ ③重启elasticsearch

​ ④测试

详细安装步骤可以参考IK分词器的安装过程。

在这里插入图片描述
查看数据卷挂载的目录

docker volume inspect es-plugins

在这里插入图片描述
在这里插入图片描述
重启elasticsearch

# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es

测试用法如下:

POST /_analyze
{
  "text": "如家酒店还不错",
  "analyzer": "pinyin"
}

结果:

在这里插入图片描述

2.2.自定义分词器

默认的拼音分词器会将每个汉字单独分为拼音,而我们希望的是每个词条形成一组拼音,需要对拼音分词器做个性化定制,形成自定义分词器。

elasticsearch中分词器(analyzer)的组成包含三部分:

  • character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
  • tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
  • tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等

文档分词时会依次由这三部分来处理文档:

在这里插入图片描述

声明自定义分词器的语法如下:

PUT /test
{
  "settings": {
    "analysis": {
      "analyzer": { // 自定义分词器
        "my_analyzer": {  // 分词器名称
          "tokenizer": "ik_max_word",
          "filter": "py"
        }
      },
      "filter": { // 自定义tokenizer filter
        "py": { // 过滤器名称
          "type": "pinyin", // 过滤器类型,这里是pinyin
		  "keep_full_pinyin": false,//一个一个
          "keep_joined_full_pinyin": true,//全拼
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        "analyzer": "my_analyzer",
        "search_analyzer": "ik_smart"
      }
    }
  }
}

测试:

在这里插入图片描述

总结:

如何使用拼音分词器?

  • ①下载pinyin分词器

  • ②解压并放到elasticsearch的plugin目录

  • ③重启即可

如何自定义分词器?

  • ①创建索引库时,在settings中配置,可以包含三部分

  • ②character filter

  • ③tokenizer

  • ④filter

拼音分词器注意事项?

  • 为了避免搜索到同音字,搜索时不要使用拼音分词器

2.3.自动补全查询

elasticsearch提供了Completion Suggester查询来实现自动补全功能。这个查询会匹配以用户输入内容开头的词条并返回。为了提高补全查询的效率,对于文档中字段的类型有一些约束:

  • 参与补全查询的字段必须是completion类型。

  • 字段的内容一般是用来补全的多个词条形成的数组。

比如,一个这样的索引库:

// 创建索引库
PUT test2
{
  "mappings": {
    "properties": {
      "title":{
        "type": "completion"
      }
    }
  }
}

然后插入下面的数据:

# 示例数据
POST test2/_doc
{
  "title": ["Sony", "WH-1000XM3"]
}
POST test/_doc
{
  "title": ["SK-II", "PITERA"]
}
POST test/_doc
{
  "title": ["Nintendo", "switch"]
}

查询的DSL语句如下:

# 自动补全查询
GET /test2/_search
{
  "suggest": {
    "title_suggest": {
      "text": "s", // 关键字
      "completion": {
        "field": "title", // 补全查询的字段
        "skip_duplicates": true, // 跳过重复的
        "size": 10 // 获取前10条结果
      }
    }
  }
}

2.4.实现酒店搜索框自动补全

现在,我们的hotel索引库还没有设置拼音分词器,需要修改索引库中的配置。但是我们知道索引库是无法修改的,只能删除然后重新创建。

另外,我们需要添加一个字段,用来做自动补全,将brand、suggestion、city等都放进去,作为自动补全的提示。

因此,总结一下,我们需要做的事情包括:

  1. 修改hotel索引库结构,设置自定义拼音分词器

  2. 修改索引库的name、all字段,使用自定义分词器

  3. 索引库添加一个新字段suggestion,类型为completion类型,使用自定义的分词器

  4. 给HotelDoc类添加suggestion字段,内容包含brand、business

  5. 重新导入数据到hotel库

2.4.1.修改酒店映射结构

代码如下:

# 删除原来使用的索引库
DELETE /hotel

# 酒店数据索引库
PUT /hotel
{
  "settings": {
    "analysis": {
      "analyzer": {
        "text_anlyzer": {
          "tokenizer": "ik_max_word",
          "filter": "py"
        },
        "completion_analyzer": {
          "tokenizer": "keyword",
          "filter": "py"
        }
      },
      "filter": {
        "py": {
          "type": "pinyin",
          "keep_full_pinyin": false,
          "keep_joined_full_pinyin": true,
          "keep_original": true,
          "limit_first_letter_length": 16,
          "remove_duplicated_term": true,
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  "mappings": {
    "properties": {
      "id":{
        "type": "keyword"
      },
      "name":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart",
        "copy_to": "all"
      },
      "address":{
        "type": "keyword",
        "index": false
      },
      "price":{
        "type": "integer"
      },
      "score":{
        "type": "integer"
      },
      "brand":{
        "type": "keyword",
        "copy_to": "all"
      },
      "city":{
        "type": "keyword"
      },
      "starName":{
        "type": "keyword"
      },
      "business":{
        "type": "keyword",
        "copy_to": "all"
      },
      "location":{
        "type": "geo_point"
      },
      "pic":{
        "type": "keyword",
        "index": false
      },
      "all":{
        "type": "text",
        "analyzer": "text_anlyzer",
        "search_analyzer": "ik_smart"
      },
      "suggestion":{
          "type": "completion",
          "analyzer": "completion_analyzer"
      }
    }
  }
}

2.4.2.修改HotelDoc实体

HotelDoc中要添加一个字段,用来做自动补全,内容可以是酒店品牌、城市、商圈等信息。按照自动补全字段的要求,最好是这些字段的数组。

因此我们在HotelDoc中添加一个suggestion字段,类型为List<String>,然后将brand、city、business等信息放到里面。

代码如下:

@Data
@NoArgsConstructor
public class HotelDoc {
    private Long id;
    private String name;
    private String address;
    private Integer price;
    private Integer score;
    private String brand;
    private String city;
    private String starName;
    private String business;
    private String location;
    private String pic;
    private Object distance;
    private Boolean isAD;
    private List<String> suggestion;

    public HotelDoc(Hotel hotel) {
        this.id = hotel.getId();
        this.name = hotel.getName();
        this.address = hotel.getAddress();
        this.price = hotel.getPrice();
        this.score = hotel.getScore();
        this.brand = hotel.getBrand();
        this.city = hotel.getCity();
        this.starName = hotel.getStarName();
        this.business = hotel.getBusiness();
        this.location = hotel.getLatitude() + ", " + hotel.getLongitude();
        this.pic = hotel.getPic();
        // 组装suggestion
        if(this.business.contains("/")){//这里根据实际情况,有的数据库是通过"、"来分割的,修改即可
            // business有多个值,需要切割
            String[] arr = this.business.split("/");//这里根据实际情况,有的数据库是通过"、"来分割的,修改即可
            // 添加元素
            this.suggestion = new ArrayList<>();
            this.suggestion.add(this.brand);
            Collections.addAll(this.suggestion, arr);
        }else {
            this.suggestion = Arrays.asList(this.brand, this.business);
        }
    }
}

2.4.3.重新导入

重新执行之前编写的导入数据功能,可以看到新的酒店数据中包含了suggestion:

在这里插入图片描述

2.4.4.自动补全查询的JavaAPI

之前我们学习了自动补全查询的DSL,而没有学习对应的JavaAPI,这里给出一个示例:
在这里插入图片描述

而自动补全的结果也比较特殊,解析的代码如下:

在这里插入图片描述

2.4.5.实现搜索框自动补全

查看前端页面,可以发现当我们在输入框键入时,前端会发起ajax请求:

在这里插入图片描述

返回值是补全词条的集合,类型为List<String>

1)在cn.demo.hotel.web包下的HotelController中添加新接口,接收新的请求:

@GetMapping("suggestion")
public List<String> getSuggestions(@RequestParam("key") String prefix) {
    return hotelService.getSuggestions(prefix);
}

2)在cn.demo.hotel.service包下的IhotelService中添加方法:

List<String> getSuggestions(String prefix);

3)在cn.demo.hotel.service.impl.HotelService中实现该方法:

@Override
public List<String> getSuggestions(String prefix) {
    try {
        // 1.准备Request
        SearchRequest request = new SearchRequest("hotel");
        // 2.准备DSL
        request.source().suggest(new SuggestBuilder().addSuggestion(
            "suggestions",
            SuggestBuilders.completionSuggestion("suggestion")
            .prefix(prefix)
            .skipDuplicates(true)
            .size(10)
        ));
        // 3.发起请求
        SearchResponse response = client.search(request, RequestOptions.DEFAULT);
        // 4.解析结果
        Suggest suggest = response.getSuggest();
        // 4.1.根据补全查询名称,获取补全结果
        CompletionSuggestion suggestions = suggest.getSuggestion("suggestions");
        // 4.2.获取options
        List<CompletionSuggestion.Entry.Option> options = suggestions.getOptions();
        // 4.3.遍历
        List<String> list = new ArrayList<>(options.size());
        for (CompletionSuggestion.Entry.Option option : options) {
            String text = option.getText().toString();
            list.add(text);
        }
        return list;
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3.数据同步

elasticsearch中的酒店数据来自于mysql数据库,因此mysql数据发生改变时,elasticsearch也必须跟着改变,这个就是elasticsearch与mysql之间的数据同步

在这里插入图片描述

3.1.思路分析

常见的数据同步方案有三种:

  • 同步调用
  • 异步通知
  • 监听binlog

3.1.1.同步调用

方案一:同步调用

在这里插入图片描述

基本步骤如下:

  • hotel-demo对外提供接口,用来修改elasticsearch中的数据
  • 酒店管理服务在完成数据库操作后,直接调用hotel-demo提供的接口,

3.1.2.异步通知

方案二:异步通知

在这里插入图片描述

流程如下:

  • hotel-admin对mysql数据库数据完成增、删、改后,发送MQ消息
  • hotel-demo监听MQ,接收到消息后完成elasticsearch数据修改

3.1.3.监听binlog

方案三:监听binlog

在这里插入图片描述

流程如下:

  • 给mysql开启binlog功能
  • mysql完成增、删、改操作都会记录在binlog中
  • hotel-demo基于canal监听binlog变化,实时更新elasticsearch中的内容

3.1.4.选择

方式一:同步调用

  • 优点:实现简单,粗暴
  • 缺点:业务耦合度高

方式二:异步通知

  • 优点:低耦合,实现难度一般
  • 缺点:依赖mq的可靠性

方式三:监听binlog

  • 优点:完全解除服务间耦合
  • 缺点:开启binlog增加数据库负担、实现复杂度高

3.2.实现数据同步

3.2.1.思路

利用课前资料提供的hotel-admin项目作为酒店管理的微服务。当酒店数据发生增、删、改时,要求对elasticsearch中数据也要完成相同操作。

步骤:

  • 导入课前资料提供的hotel-admin项目,启动并测试酒店数据的CRUD

  • 声明exchange、queue、RoutingKey

  • 在hotel-admin中的增、删、改业务中完成消息发送

  • 在hotel-demo中完成消息监听,并更新elasticsearch中数据

  • 启动并测试数据同步功能

3.2.2.导入demo

导入课前资料提供的hotel-admin项目:

在这里插入图片描述

运行后,访问 http://localhost:8099

在这里插入图片描述

其中包含了酒店的CRUD功能:

在这里插入图片描述

3.2.3.声明交换机、队列

MQ结构如图:

在这里插入图片描述

1)引入依赖

在hotel-admin、hotel-demo中引入rabbitmq的依赖:

<!--amqp-->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
2)声明队列交换机名称

在hotel-admin和hotel-demo中的application.yaml中添加rabbitmq配置

spring:
  rabbitmq:
    host: 192.168.208.128
    port: 5672
    username: root
    password: 123321
    virtual-host: /

在hotel-admin和hotel-demo中的cn.demo.hotel.constatnts包下新建一个类MqConstants

    public class MqConstants {
    /**
     * 交换机
     */
    public final static String HOTEL_EXCHANGE = "hotel.topic";
    /**
     * 监听新增和修改的队列
     */
    public final static String HOTEL_INSERT_QUEUE = "hotel.insert.queue";
    /**
     * 监听删除的队列
     */
    public final static String HOTEL_DELETE_QUEUE = "hotel.delete.queue";
    /**
     * 新增或修改的RoutingKey
     */
    public final static String HOTEL_INSERT_KEY = "hotel.insert";
    /**
     * 删除的RoutingKey
     */
    public final static String HOTEL_DELETE_KEY = "hotel.delete";
}
3)声明队列交换机

在hotel-demo中config包下,定义配置类,声明队列、交换机:

@Configuration
public class MqConfig {
    @Bean
    public TopicExchange topicExchange(){
        return new TopicExchange(MqConstants.HOTEL_EXCHANGE, true, false);
    }

    @Bean
    public Queue insertQueue(){
        return new Queue(MqConstants.HOTEL_INSERT_QUEUE, true);
    }

    @Bean
    public Queue deleteQueue(){
        return new Queue(MqConstants.HOTEL_DELETE_QUEUE, true);
    }

    @Bean
    public Binding insertQueueBinding(){
        return BindingBuilder.bind(insertQueue()).to(topicExchange()).with(MqConstants.HOTEL_INSERT_KEY);
    }

    @Bean
    public Binding deleteQueueBinding(){
        return BindingBuilder.bind(deleteQueue()).to(topicExchange()).with(MqConstants.HOTEL_DELETE_KEY);
    }
}

3.2.4.发送MQ消息

在hotel-admin中的增、删、改业务中分别发送MQ消息:

在这里插入图片描述

@RestController
@RequestMapping("hotel")
public class HotelController {

    @Autowired
    private IHotelService hotelService;

    @Autowired
    private RabbitTemplate rabbitTemplate;

    @GetMapping("/{id}")
    public Hotel queryById(@PathVariable("id") Long id){
        return hotelService.getById(id);
    }

    @GetMapping("/list")
    public PageResult hotelList(
            @RequestParam(value = "page", defaultValue = "1") Integer page,
            @RequestParam(value = "size", defaultValue = "1") Integer size
    ){
        Page<Hotel> result = hotelService.page(new Page<>(page, size));

        return new PageResult(result.getTotal(), result.getRecords());
    }

    @PostMapping
    public void saveHotel(@RequestBody Hotel hotel){
        hotelService.save(hotel);

        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());
    }

    @PutMapping()
    public void updateById(@RequestBody Hotel hotel){
        if (hotel.getId() == null) {
            throw new InvalidParameterException("id不能为空");
        }
        hotelService.updateById(hotel);

        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_INSERT_KEY, hotel.getId());

    }

    @DeleteMapping("/{id}")
    public void deleteById(@PathVariable("id") Long id) {
        hotelService.removeById(id);

        rabbitTemplate.convertAndSend(MqConstants.HOTEL_EXCHANGE, MqConstants.HOTEL_DELETE_KEY, id);

    }
}

3.2.5.接收MQ消息

hotel-demo接收到MQ消息要做的事情包括:

  • 新增消息:根据传递的hotel的id查询hotel信息,然后新增一条数据到索引库
  • 删除消息:根据传递的hotel的id删除索引库中的一条数据

1)首先在hotel-demo的cn.demo.hotel.service包下的IHotelService中新增新增、删除业务

void deleteById(Long id);

void insertById(Long id);

2)给hotel-demo中的cn.demo.hotel.service.impl包下的HotelService中实现业务:

@Override
public void deleteById(Long id) {
    try {
        // 1.准备Request
        DeleteRequest request = new DeleteRequest("hotel", id.toString());
        // 2.发送请求
        client.delete(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

@Override
public void insertById(Long id) {
    try {
        // 0.根据id查询酒店数据
        Hotel hotel = getById(id);
        // 转换为文档类型
        HotelDoc hotelDoc = new HotelDoc(hotel);

        // 1.准备Request对象
        IndexRequest request = new IndexRequest("hotel").id(hotel.getId().toString());
        // 2.准备Json文档
        request.source(JSON.toJSONString(hotelDoc), XContentType.JSON);
        // 3.发送请求
        client.index(request, RequestOptions.DEFAULT);
    } catch (IOException e) {
        throw new RuntimeException(e);
    }
}

3)编写监听器

在hotel-demo中的cn.demo.hotel.mq包新增一个类:

@Component
public class HotelListener {

    @Autowired
    private IHotelService hotelService;

    /**
     * 监听酒店新增或修改的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_INSERT_QUEUE)
    public void listenHotelInsertOrUpdate(Long id){
        hotelService.insertById(id);
    }

    /**
     * 监听酒店删除的业务
     * @param id 酒店id
     */
    @RabbitListener(queues = MqConstants.HOTEL_DELETE_QUEUE)
    public void listenHotelDelete(Long id){
        hotelService.deleteById(id);
    }
}

4.集群

单机的elasticsearch做数据存储,必然面临两个问题:海量数据存储问题、单点故障问题。

  • 海量数据存储问题:将索引库从逻辑上拆分为N个分片(shard),存储到多个节点
  • 单点故障问题:将分片数据在不同节点备份(replica )

ES集群相关概念:

  • 集群(cluster):一组拥有共同的 cluster name 的 节点。

  • 节点(node) :集群中的一个 Elasticearch 实例

  • 分片(shard):索引可以被拆分为不同的部分进行存储,称为分片。在集群环境下,一个索引的不同分片可以拆分到不同的节点中

    解决问题:数据量太大,单点存储量有限的问题。

在这里插入图片描述

此处,我们把数据分成3片:shard0、shard1、shard2

  • 主分片(Primary shard):相对于副本分片的定义。

  • 副本分片(Replica shard)每个主分片可以有一个或者多个副本,数据和主分片一样。

数据备份可以保证高可用,但是每个分片备份一份,所需要的节点数量就会翻一倍,成本实在是太高了!

为了在高可用和成本间寻求平衡,我们可以这样做:

  • 首先对数据分片,存储到不同节点
  • 然后对每个分片进行备份,放到对方节点,完成互相备份

这样可以大大减少所需要的服务节点数量,如图,我们以3分片,每个分片备份一份为例:
在这里插入图片描述

现在,每个分片都有1个备份,存储在3个节点:

  • node0:保存了分片0和1
  • node1:保存了分片0和2
  • node2:保存了分片1和2

4.1 部署搭建ES集群

我们会在单机上利用docker容器运行多个es实例来模拟es集群。不过生产环境推荐大家每一台服务节点仅部署一个es的实例。

部署es集群可以直接使用docker-compose来完成,但这要求你的Linux虚拟机至少有4G的内存空间

4.1.1创建es集群

首先编写一个docker-compose文件,内容如下:

version: '2.2'
services:
  es01:
    image: elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data02:/usr/share/elasticsearch/data
    ports:
      - 9201:9200
    networks:
      - elastic
  es03:
    image: elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic
    ports:
      - 9202:9200
volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge

在这里插入图片描述

es运行需要修改一些linux系统权限,修改/etc/sysctl.conf文件

vi /etc/sysctl.conf

添加下面的内容:

vm.max_map_count=262144

然后执行命令,让配置生效:

sysctl -p

在这里插入图片描述

通过docker-compose启动集群:
启动前先关闭之前使用的es

docker stop es
docker-compose up -d

监控

docker logs -f es01

4.1.2 集群状态监控

kibana可以监控es集群,不过新版本需要依赖es的x-pack 功能,配置比较复杂。

这里推荐使用cerebro来监控es集群状态,官方网址:https://github.com/lmenezes/cerebro

课前资料已经提供了安装包:

在这里插入图片描述

解压即可使用,非常方便。

解压好的目录如下:

在这里插入图片描述

进入对应的bin目录:

在这里插入图片描述

双击其中的cerebro.bat文件即可启动服务。

在这里插入图片描述

访问http://localhost:9000 即可进入管理界面:
在这里插入图片描述

输入你的elasticsearch的任意节点的地址和端口,点击connect即可:

在这里插入图片描述

绿色的条,代表集群处于绿色(健康状态)。

4.1.3 创建索引库

1)利用kibana的DevTools创建索引库

在DevTools中输入指令:

PUT /demo
{
  "settings": {
    "number_of_shards": 3, // 分片数量
    "number_of_replicas": 1 // 副本数量
  },
  "mappings": {
    "properties": {
      // mapping映射定义 ...
    }
  }
}
2)利用cerebro创建索引库

利用cerebro还可以创建索引库:

在这里插入图片描述

填写索引库信息,点击右下角的create按钮:
在这里插入图片描述

4.1.4 查看分片效果

回到首页,即可查看索引库分片效果:

在这里插入图片描述

4.2.集群脑裂问题

4.2.1.集群职责划分

elasticsearch中集群节点有不同的职责划分:

在这里插入图片描述

默认情况下,集群中的任何一个节点都同时具备上述四种角色。

但是真实的集群一定要将集群职责分离:

  • master节点:对CPU要求高,但是内存要求第
  • data节点:对CPU和内存要求都高
  • coordinating节点:对网络带宽、CPU要求高

职责分离可以让我们根据不同节点的需求分配不同的硬件去部署。而且避免业务之间的互相干扰。

一个典型的es集群职责划分如图:

在这里插入图片描述

4.2.2.脑裂问题

脑裂是因为集群中的节点失联导致的。

例如一个集群中,主节点与其它节点失联:

在这里插入图片描述

此时,node2和node3认为node1宕机,就会重新选主:

在这里插入图片描述

当node3当选后,集群继续对外提供服务,node2和node3自成集群,node1自成集群,两个集群数据不同步,出现数据差异。

当网络恢复后,因为集群中有两个master节点,集群状态的不一致,出现脑裂的情况:

在这里插入图片描述

解决脑裂的方案是,要求选票超过 ( eligible节点数量 + 1 )/ 2 才能当选为主,因此eligible节点数量最好是奇数。对应配置项是discovery.zen.minimum_master_nodes,在es7.0以后,已经成为默认配置,因此一般不会发生脑裂问题

例如:3个节点形成的集群,选票必须超过 (3 + 1) / 2 ,也就是2票。node3得到node2和node3的选票,当选为主。node1只有自己1票,没有当选。集群中依然只有1个主节点,没有出现脑裂。

4.2.3.小结

master eligible节点的作用是什么?

  • 参与集群选主
  • 主节点可以管理集群状态、管理分片信息、处理创建和删除索引库的请求

data节点的作用是什么?

  • 数据的CRUD

coordinator节点的作用是什么?

  • 路由请求到其它节点

  • 合并查询到的结果,返回给用户

4.3.集群分布式存储

当新增文档时,应该保存到不同分片,保证数据均衡,那么coordinating node如何确定数据该存储到哪个分片呢?

4.3.1.分片存储测试

插入三条数据:

测试可以看到,三条数据分别在不同分片:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

结果:

在这里插入图片描述

4.3.2.分片存储原理

elasticsearch会通过hash算法来计算文档应该存储到哪个分片:

在这里插入图片描述

说明:

  • _routing默认是文档的id
  • 算法与分片数量有关,因此索引库一旦创建,分片数量不能修改!

新增文档的流程如下:

在这里插入图片描述

解读:

  • 1)新增一个id=1的文档
  • 2)对id做hash运算,假如得到的是2,则应该存储到shard-2
  • 3)shard-2的主分片在node3节点,将数据路由到node3
  • 4)保存文档
  • 5)同步给shard-2的副本replica-2,在node2节点
  • 6)返回结果给coordinating-node节点

4.4.集群分布式查询

elasticsearch的查询分成两个阶段:

  • scatter phase:分散阶段,coordinating node会把请求分发到每一个分片

  • gather phase:聚集阶段,coordinating node汇总data node的搜索结果,并处理为最终结果集返回给用户

在这里插入图片描述

4.5.集群故障转移

集群的master节点会监控集群中的节点状态,如果发现有节点宕机,会立即将宕机节点的分片数据迁移到其它节点,确保数据安全,这个叫做故障转移。

1)例如一个集群结构如图:

在这里插入图片描述

现在,node1是主节点,其它两个节点是从节点。

2)突然,node1发生了故障:

在这里插入图片描述

宕机后的第一件事,需要重新选主,例如选中了node2:

在这里插入图片描述

node2成为主节点后,会检测集群监控状态,发现:shard-1、shard-0没有副本节点。因此需要将node1上的数据迁移到node2、node3:

在这里插入图片描述
模拟故障
关闭主节点,假设是es03

docker stop es03

在这里插入图片描述
es会将将宕机节点的分片数据迁移到其它节点,确保数据安全
在这里插入图片描述
再次启动

docker start es03

会将数据分回去
在这里插入图片描述

微服务保护Sentinel

1.初识Sentinel

1.1.雪崩问题及解决方案

1.1.1.雪崩问题

微服务中,服务间调用关系错综复杂,一个微服务往往依赖于多个其它微服务。

在这里插入图片描述

如图,如果服务提供者I发生了故障,当前的应用的部分业务因为依赖于服务I,因此也会被阻塞。此时,其它不依赖于服务I的业务似乎不受影响。

在这里插入图片描述

但是,依赖服务I的业务请求被阻塞,用户不会得到响应,则tomcat的这个线程不会释放,于是越来越多的用户请求到来,越来越多的线程会阻塞:

在这里插入图片描述

服务器支持的线程和并发数有限,请求一直阻塞,会导致服务器资源耗尽,从而导致所有其它服务都不可用,那么当前服务也就不可用了。

那么,依赖于当前服务的其它服务随着时间的推移,最终也都会变的不可用,形成级联失败,雪崩就发生了:

在这里插入图片描述

1.1.2.超时处理

解决雪崩问题的常见方式有四种:

•超时处理:设定超时时间,请求超过一定时间没有响应就返回错误信息,不会无休止等待

在这里插入图片描述

1.1.3.仓壁模式

方案2:仓壁模式

仓壁模式来源于船舱的设计:

在这里插入图片描述

船舱都会被隔板分离为多个独立空间,当船体破损时,只会导致部分空间进入,将故障控制在一定范围内,避免整个船体都被淹没。

于此类似,我们可以限定每个业务能使用的线程数,避免耗尽整个tomcat的资源,因此也叫线程隔离。
在这里插入图片描述

1.1.4.断路器

断路器模式:由断路器统计业务执行的异常比例,如果超出阈值则会熔断该业务,拦截访问该业务的一切请求。

断路器会统计访问某个服务的请求数量,异常比例:

在这里插入图片描述

当发现访问服务D的请求异常比例过高时,认为服务D有导致雪崩的风险,会拦截访问服务D的一切请求,形成熔断:

在这里插入图片描述

1.1.5.限流

流量控制:限制业务访问的QPS,避免服务因流量的突增而故障。

在这里插入图片描述

1.1.6.总结

什么是雪崩问题?

  • 微服务之间相互调用,因为调用链中的一个服务故障,引起整个链路都无法访问的情况。

可以认为:

限流是对服务的保护,避免因瞬间高并发流量而导致服务故障,进而避免雪崩。是一种预防措施。

超时处理、线程隔离、降级熔断是在部分服务故障时,将故障控制在一定范围,避免雪崩。是一种补救措施。

1.2.服务保护技术对比

在SpringCloud当中支持多种服务保护技术:

早期比较流行的是Hystrix框架,但目前国内实用最广泛的还是阿里巴巴的Sentinel框架,这里我们做下对比:

SentinelHystrix
隔离策略信号量隔离线程池隔离/信号量隔离
熔断降级策略基于慢调用比例或异常比例基于失败比率
实时指标实现滑动窗口滑动窗口(基于 RxJava)
规则配置支持多种数据源支持多种数据源
扩展性多个扩展点插件的形式
基于注解的支持支持支持
限流基于 QPS,支持基于调用关系的限流有限的支持
流量整形支持慢启动、匀速排队模式不支持
系统自适应保护支持不支持
控制台开箱即用,可配置规则、查看秒级监控、机器发现等不完善
常见框架的适配Servlet、Spring Cloud、Dubbo、gRPC 等Servlet、Spring Cloud Netflix

1.3.Sentinel介绍和安装

1.3.1.初识Sentinel

Sentinel是阿里巴巴开源的一款微服务流量控制组件。官网地址:https://sentinelguard.io/zh-cn/index.html

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

1.3.2.安装Sentinel

1)下载

sentinel官方提供了UI控制台,方便我们对系统做限流设置。大家可以在GitHub下载。

课前资料也提供了下载好的jar包:
在这里插入图片描述

2)运行

将jar包放到任意非中文目录,执行命令:

java -jar sentinel-dashboard-1.8.1.jar

如果要修改Sentinel的默认端口、账户、密码,可以通过下列配置:

配置项默认值说明
server.port8080服务端口
sentinel.dashboard.auth.usernamesentinel默认用户名
sentinel.dashboard.auth.passwordsentinel默认密码

例如,修改端口:

java -Dserver.port=8090 -jar sentinel-dashboard-1.8.1.jar

3)访问

访问http://localhost:8080页面,就可以看到sentinel的控制台了:

在这里插入图片描述

需要输入账号和密码,默认都是:sentinel

登录后,发现一片空白,什么都没有:
在这里插入图片描述

这是因为我们还没有与微服务整合。

1.4.微服务整合Sentinel

之前的项目cloud-demo我们在order-service中整合sentinel,并连接sentinel的控制台,步骤如下:

1)引入sentinel依赖

<!--sentinel-->
<dependency>
    <groupId>com.alibaba.cloud</groupId> 
    <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2)配置控制台

修改application.yaml文件,添加下面内容:

server:
  port: 8088
spring:
  cloud: 
    sentinel:
      transport:
        dashboard: localhost:8080

3)访问order-service的任意端点

打开浏览器,访问http://localhost:8088/order/101,这样才能触发sentinel的监控。

然后再访问sentinel的控制台,查看效果:

在这里插入图片描述

2.流量控制

雪崩问题虽然有四种方案,但是限流是避免服务因突发的流量而发生故障,是对微服务雪崩问题的预防。我们先学习这种模式。

2.1.簇点链路

当请求进入微服务时,首先会访问DispatcherServlet,然后进入Controller、Service、Mapper,这样的一个调用链就叫做簇点链路。簇点链路中被监控的每一个接口就是一个资源

默认情况下sentinel会监控SpringMVC的每一个端点(Endpoint,也就是controller中的方法),因此SpringMVC的每一个端点(Endpoint)就是调用链路中的一个资源。

例如,我们刚才访问的order-service中的OrderController中的端点:/order/{orderId}

在这里插入图片描述

流控、熔断等都是针对簇点链路中的资源来设置的,因此我们可以点击对应资源后面的按钮来设置规则:

  • 流控:流量控制
  • 降级:降级熔断
  • 热点:热点参数限流,是限流的一种
  • 授权:请求的权限控制

2.1.快速入门

2.1.1.示例

点击资源/order/{orderId}后面的流控按钮,就可以弹出表单。

在这里插入图片描述

表单中可以填写限流规则,如下:

在这里插入图片描述

其含义是限制 /order/{orderId}这个资源的单机QPS为1,即每秒只允许1次请求,超出的请求会被拦截并报错。

2.1.2.练习:

需求:给 /order/{orderId}这个资源设置流控规则,QPS不能超过 5,然后测试。

1)首先在sentinel控制台添加限流规则

在这里插入图片描述

2)利用jmeter测试

如果没有用过jmeter,可以参考课前资料提供的文档《Jmeter快速入门.md》

课前资料提供了编写好的Jmeter测试样例:

在这里插入图片描述

打开jmeter,导入课前资料提供的测试样例:

在这里插入图片描述

选择:

在这里插入图片描述

20个用户,2秒内运行完,QPS是10,超过了5.

选中流控入门,QPS<5右键运行:

在这里插入图片描述

注意,不要点击菜单中的执行按钮来运行。

结果:

在这里插入图片描述

可以看到,成功的请求每次只有5个

2.2.流控模式

在添加限流规则时,点击高级选项,可以选择三种流控模式

  • 直接:统计当前资源的请求,触发阈值时对当前资源直接限流,也是默认的模式
  • 关联:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流
  • 链路:统计从指定链路访问到本资源的请求,触发阈值时,对指定链路限流

在这里插入图片描述

快速入门测试的就是直接模式。

2.2.1.关联模式

关联模式:统计与当前资源相关的另一个资源,触发阈值时,对当前资源限流

配置规则

在这里插入图片描述

语法说明:当/write资源访问量触发阈值时,就会对/read资源限流,避免影响/write资源。

使用场景:比如用户支付时需要修改订单状态,同时用户要查询订单。查询和修改操作会争抢数据库锁,产生竞争。业务需求是优先支付和更新订单的业务,因此当修改订单业务触发阈值时,需要对查询订单业务限流。

需求说明

  • 在OrderController新建两个端点:/order/query和/order/update,无需实现业务

  • 配置流控规则,当/order/ update资源被访问的QPS超过5时,对/order/query请求限流

1)定义/order/query端点,模拟订单查询

@GetMapping("/query")
public String queryOrder() {
    return "查询订单成功";
}

2)定义/order/update端点,模拟订单更新

@GetMapping("/update")
public String updateOrder() {
    return "更新订单成功";
}

重启服务,查看sentinel控制台的簇点链路:

在这里插入图片描述

3)配置流控规则

对哪个端点限流,就点击哪个端点后面的按钮。我们是对订单查询/order/query限流,因此点击它后面的按钮:

在这里插入图片描述

在表单中填写流控规则:

在这里插入图片描述

4)在Jmeter测试

选择《流控模式-关联》:

在这里插入图片描述

可以看到1000个用户,100秒,因此QPS为10,超过了我们设定的阈值:5

查看http请求:

在这里插入图片描述

请求的目标是/order/update,这样这个断点就会触发阈值。

但限流的目标是/order/query,我们在浏览器访问,可以发现:

在这里插入图片描述

确实被限流了。

5)总结

在这里插入图片描述

2.2.2.链路模式

链路模式:只针对从指定链路访问到本资源的请求做统计,判断是否超过阈值。

配置示例

例如有两条请求链路:

  • /test1 --> /common

  • /test2 --> /common

如果只希望统计从/test2进入到/common的请求,则可以这样配置:

在这里插入图片描述

实战案例

需求:有查询订单和创建订单业务,两者都需要查询商品。针对从查询订单进入到查询商品的请求统计,并设置限流。

步骤:

  1. 在OrderService中添加一个queryGoods方法,不用实现业务

  2. 在OrderController中,改造/order/query端点,调用OrderService中的queryGoods方法

  3. 在OrderController中添加一个/order/save的端点,调用OrderService的queryGoods方法

  4. 给queryGoods设置限流规则,从/order/query进入queryGoods的方法限制QPS必须小于2

实现:

1)添加查询商品方法

在order-service服务中,给OrderService类添加一个queryGoods方法:

public void queryGoods(){
    System.err.println("查询商品");
}
2)查询订单时,查询商品

在order-service的OrderController中,修改/order/query端点的业务逻辑:

@GetMapping("/query")
public String queryOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.out.println("查询订单");
    return "查询订单成功";
}
3)新增订单,查询商品

在order-service的OrderController中,修改/order/save端点,模拟新增订单:

@GetMapping("/save")
public String saveOrder() {
    // 查询商品
    orderService.queryGoods();
    // 查询订单
    System.err.println("新增订单");
    return "新增订单成功";
}
4)给查询商品添加资源标记

默认情况下,OrderService中的方法是不被Sentinel监控的,需要我们自己通过注解来标记要监控的方法。

给OrderService的queryGoods方法添加@SentinelResource注解:

@SentinelResource("goods")
public void queryGoods(){
    System.err.println("查询商品");
}

链路模式中,是对不同来源的两个链路做监控。但是sentinel默认会给进入SpringMVC的所有请求设置同一个root资源,会导致链路模式失效。

我们需要关闭这种对SpringMVC的资源聚合,修改order-service服务的application.yml文件:

spring:
  cloud:
    sentinel:
      web-context-unify: false # 关闭context整合

重启服务,访问/order/query和/order/save,可以查看到sentinel的簇点链路规则中,出现了新的资源:

在这里插入图片描述

5)添加流控规则

点击goods资源后面的流控按钮,在弹出的表单中填写下面信息:
在这里插入图片描述

在这里插入图片描述

只统计从/order/query进入/goods的资源,QPS阈值为2,超出则被限流。

6)Jmeter测试

选择《流控模式-链路》:

在这里插入图片描述

可以看到这里200个用户,50秒内发完,QPS为4,超过了我们设定的阈值2

一个http请求是访问/order/save:

在这里插入图片描述

运行的结果:
在这里插入图片描述

完全不受影响。

另一个是访问/order/query:

在这里插入图片描述

运行结果:

在这里插入图片描述

每次只有2个通过。

2.2.3.总结

流控模式有哪些?

•直接:对当前资源限流

•关联:高优先级资源触发阈值,对低优先级资源限流。

•链路:阈值统计时,只统计从指定资源进入当前资源的请求,是对请求来源的限流

2.3.流控效果

在流控的高级选项中,还有一个流控效果选项:

在这里插入图片描述

流控效果是指请求达到流控阈值时应该采取的措施,包括三种:

  • 快速失败:达到阈值后,新的请求会被立即拒绝并抛出FlowException异常。是默认的处理方式。

  • warm up:预热模式,对超出阈值的请求同样是拒绝并抛出异常。但这种模式阈值会动态变化,从一个较小值逐渐增加到最大阈值。

  • 排队等待:让所有的请求按照先后次序排队执行,两个请求的间隔不能小于指定时长

2.3.1.warm up

阈值一般是一个微服务能承担的最大QPS,但是一个服务刚刚启动时,一切资源尚未初始化(冷启动),如果直接将QPS跑到最大值,可能导致服务瞬间宕机。

在这里插入图片描述

warm up也叫预热模式,是应对服务冷启动的一种方案。请求阈值初始值是 maxThreshold / coldFactor,持续指定时长后,逐渐提高到maxThreshold值。而coldFactor的默认值是3.

例如,我设置QPS的maxThreshold为10,预热时间为5秒,那么初始阈值就是 10 / 3 ,也就是3,然后在5秒后逐渐增长到10.

在这里插入图片描述

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用warm up效果,预热时长为5秒

1)配置流控规则:

在这里插入图片描述

2)Jmeter测试

选择《流控效果,warm up》:

在这里插入图片描述

QPS为10.

刚刚启动时,大部分请求失败,成功的只有3个,说明QPS被限定在3:

在这里插入图片描述

随着时间推移,成功比例越来越高:

在这里插入图片描述

到Sentinel控制台查看实时监控:

在这里插入图片描述

一段时间后:

在这里插入图片描述

2.3.2.排队等待

当请求超过QPS阈值时,快速失败和warm up 会拒绝新的请求并抛出异常。

而排队等待则是让所有请求进入一个队列中,然后按照阈值允许的时间间隔依次执行。后来的请求必须等待前面执行完成,如果请求预期的等待时间超出最大时长,则会被拒绝。

工作原理

例如:QPS = 5,意味着每200ms处理一个队列中的请求;timeout = 2000,意味着预期等待时长超过2000ms的请求会被拒绝并抛出异常。

那什么叫做预期等待时长呢?

比如现在一下子来了12 个请求,因为每200ms执行一个请求,那么:

  • 第6个请求的预期等待时长 = 200 * (6 - 1) = 1000ms
  • 第12个请求的预期等待时长 = 200 * (12-1) = 2200ms

现在,第1秒同时接收到10个请求,但第2秒只有1个请求,此时QPS的曲线这样的:

在这里插入图片描述

如果使用队列模式做流控,所有进入的请求都要排队,以固定的200ms的间隔执行,QPS会变的很平滑:

在这里插入图片描述

平滑的QPS曲线,对于服务器来说是更友好的。

案例

需求:给/order/{orderId}这个资源设置限流,最大QPS为10,利用排队的流控效果,超时时长设置为5s

1)添加流控规则

在这里插入图片描述

2)Jmeter测试

选择《流控效果,队列》:

在这里插入图片描述

QPS为15,已经超过了我们设定的10。

如果是之前的 快速失败、warmup模式,超出的请求应该会直接报错。

但是我们看看队列模式的运行结果:

在这里插入图片描述

全部都通过了。

再去sentinel查看实时监控的QPS曲线:

在这里插入图片描述

QPS非常平滑,一致保持在10,但是超出的请求没有被拒绝,而是放入队列。因此响应时间(等待时间)会越来越长。

当队列满了以后,才会有部分请求失败:

在这里插入图片描述

2.3.3.总结

流控效果有哪些?

  • 快速失败:QPS超过阈值时,拒绝新的请求

  • warm up: QPS超过阈值时,拒绝新的请求;QPS阈值是逐渐提升的,可以避免冷启动时高并发导致服务宕机。

  • 排队等待:请求会进入队列,按照阈值允许的时间间隔依次执行请求;如果请求预期等待时长大于超时时间,直接拒绝

2.4.热点参数限流

之前的限流是统计访问某个资源的所有请求,判断是否超过QPS阈值。而热点参数限流是分别统计参数值相同的请求,判断是否超过QPS阈值。

2.4.1.全局参数限流

例如,一个根据id查询商品的接口:

在这里插入图片描述

访问/goods/{id}的请求中,id参数值会有变化,热点参数限流会根据参数值分别统计QPS,统计结果:

在这里插入图片描述

当id=1的请求触发阈值被限流时,id值不为1的请求不受影响。

配置示例:

在这里插入图片描述

代表的含义是:对hot这个资源的0号参数(第一个参数)做统计,每1秒相同参数值的请求数不能超过5

2.4.2.热点参数限流

刚才的配置中,对查询商品这个接口的所有商品一视同仁,QPS都限定为5.

而在实际开发中,可能部分商品是热点商品,例如秒杀商品,我们希望这部分商品的QPS限制与其它商品不一样,高一些。那就需要配置热点参数限流的高级选项了:

在这里插入图片描述

结合上一个配置,这里的含义是对0号的long类型参数限流,每1秒相同参数的QPS不能超过5,有两个例外:

•如果参数值是100,则每1秒允许的QPS为10

•如果参数值是101,则每1秒允许的QPS为15

2.4.4.案例

案例需求:给/order/{orderId}这个资源添加热点参数限流,规则如下:

•默认的热点参数规则是每1秒请求量不超过2

•给102这个参数设置例外:每1秒请求量不超过4

•给103这个参数设置例外:每1秒请求量不超过10

注意事项:热点参数限流对默认的SpringMVC资源无效,需要利用@SentinelResource注解标记资源

1)标记资源

给order-service中的OrderController中的/order/{orderId}资源添加注解:

在这里插入图片描述

2)热点参数限流规则

访问该接口,可以看到我们标记的hot资源出现了:

在这里插入图片描述

这里不要点击hot后面的按钮,页面有BUG

点击左侧菜单中热点规则菜单:

在这里插入图片描述

点击新增,填写表单:

在这里插入图片描述

3)Jmeter测试

选择《热点参数限流 QPS1》:

在这里插入图片描述

这里发起请求的QPS为5.

包含3个http请求:

普通参数,QPS阈值为2
在这里插入图片描述

运行结果:

在这里插入图片描述

例外项,QPS阈值为4

在这里插入图片描述

运行结果:

在这里插入图片描述

例外项,QPS阈值为10

在这里插入图片描述

运行结果:

在这里插入图片描述

3.隔离和降级

限流是一种预防措施,虽然限流可以尽量避免因高并发而引起的服务故障,但服务还会因为其它原因而故障。

而要将这些故障控制在一定范围,避免雪崩,就要靠线程隔离(舱壁模式)和熔断降级手段了。

线程隔离之前讲到过:调用者在调用服务提供者时,给每个调用的请求分配独立线程池,出现故障时,最多消耗这个线程池内资源,避免把调用者的所有资源耗尽。

在这里插入图片描述

熔断降级:是在调用方这边加入断路器,统计对服务提供者的调用,如果调用的失败比例过高,则熔断该业务,不允许访问该服务的提供者了。

在这里插入图片描述

可以看到,不管是线程隔离还是熔断降级,都是对客户端(调用方)的保护。需要在调用方 发起远程调用时做线程隔离、或者服务熔断。

而我们的微服务远程调用都是基于Feign来完成的,因此我们需要将Feign与Sentinel整合,在Feign里面实现线程隔离和服务熔断。

3.1.FeignClient整合Sentinel

SpringCloud中,微服务调用都是通过Feign来实现的,因此做客户端保护必须整合Feign和Sentinel。

3.1.1.修改配置,开启sentinel功能

修改OrderService的application.yml文件,开启Feign的Sentinel功能:

feign:
  sentinel:
    enabled: true # 开启feign对sentinel的支持

3.1.2.编写失败降级逻辑

业务失败后,不能直接报错,而应该返回用户一个友好提示或者默认结果,这个就是失败降级逻辑。

给FeignClient编写失败后的降级逻辑

①方式一:FallbackClass,无法对远程调用的异常做处理

②方式二:FallbackFactory,可以对远程调用的异常做处理,我们选择这种

这里我们演示方式二的失败降级处理。

步骤一:在feing-api项目中定义类,实现FallbackFactory:

在这里插入图片描述

代码:

@Slf4j
public class UserClientFallbackFactory implements FallbackFactory<UserClient> {
    @Override
    public UserClient create(Throwable throwable) {
        return new UserClient() {
            @Override
            public User findById(Long id) {
                log.error("查询用户异常", throwable);
                return new User();
            }
        };
    }
}

步骤二:在feing-api项目中的DefaultFeignConfiguration类中将UserClientFallbackFactory注册为一个Bean:

@Bean
public UserClientFallbackFactory userClientFallbackFactory(){
    return new UserClientFallbackFactory();
}

步骤三:在feing-api项目中的UserClient接口中使用UserClientFallbackFactory:

@FeignClient(value = "userservice", fallbackFactory = UserClientFallbackFactory.class)
public interface UserClient {

    @GetMapping("/user/{id}")
    User findById(@PathVariable("id") Long id);
}

重启后,访问一次订单查询业务,然后查看sentinel控制台,可以看到新的簇点链路:

在这里插入图片描述

3.1.3.总结

Sentinel支持的雪崩解决方案:

  • 线程隔离(仓壁模式)
  • 降级熔断

Feign整合Sentinel的步骤:

  • 在application.yml中配置:feign.sentienl.enable=true
  • 给FeignClient编写FallbackFactory并注册为Bean
  • 将FallbackFactory配置到FeignClient

3.2.线程隔离(舱壁模式)

3.2.1.线程隔离的实现方式

线程隔离有两种方式实现:

  • 线程池隔离

  • 信号量隔离(Sentinel默认采用)

如图:

在这里插入图片描述

线程池隔离:给每个服务调用业务分配一个线程池,利用线程池本身实现隔离效果

信号量隔离:不创建线程池,而是计数器模式,记录业务使用的线程数量,达到信号量上限时,禁止新的请求。

两者的优缺点:

在这里插入图片描述

3.2.2.sentinel的线程隔离

用法说明

在添加限流规则时,可以选择两种阈值类型:

在这里插入图片描述

  • QPS:就是每秒的请求数,在快速入门中已经演示过

  • 线程数:是该资源能使用用的tomcat线程数的最大值。也就是通过限制线程数量,实现线程隔离(舱壁模式)。

案例需求:给 order-service服务中的UserClient的查询用户接口设置流控规则,线程数不能超过 2。然后利用jemeter测试。

1)配置隔离规则

选择feign接口后面的流控按钮:

在这里插入图片描述

填写表单:

在这里插入图片描述

2)Jmeter测试

选择《阈值类型-线程数<2》:

在这里插入图片描述

一次发生10个请求,有较大概率并发线程数超过2,而超出的请求会走之前定义的失败降级逻辑。

查看运行结果:

在这里插入图片描述

发现虽然结果都是通过了,不过部分请求得到的响应是降级返回的null信息。

3.2.3.总结

线程隔离的两种手段是?

  • 信号量隔离

  • 线程池隔离

信号量隔离的特点是?

  • 基于计数器模式,简单,开销小

线程池隔离的特点是?

  • 基于线程池模式,有额外开销,但隔离控制更强

3.3.熔断降级

熔断降级是解决雪崩问题的重要手段。其思路是由断路器统计服务调用的异常比例、慢请求比例,如果超出阈值则会熔断该服务。即拦截访问该服务的一切请求;而当服务恢复时,断路器会放行访问该服务的请求。

断路器控制熔断和放行是通过状态机来完成的:

在这里插入图片描述

状态机包括三个状态:

  • closed:关闭状态,断路器放行所有请求,并开始统计异常比例、慢请求比例。超过阈值则切换到open状态
  • open:打开状态,服务调用被熔断,访问被熔断服务的请求会被拒绝,快速失败,直接走降级逻辑。Open状态5秒后会进入half-open状态
  • half-open:半开状态,放行一次请求,根据执行结果来判断接下来的操作。
    • 请求成功:则切换到closed状态
    • 请求失败:则切换到open状态

断路器熔断策略有三种:慢调用、异常比例、异常数

3.3.1.慢调用

慢调用:业务的响应时长(RT)大于指定时长的请求认定为慢调用请求。在指定时间内,如果请求数量超过设定的最小数量,慢调用比例大于设定的阈值,则触发熔断。

例如:
在这里插入图片描述

解读:RT超过500ms的调用是慢调用,统计最近10000ms内的请求,如果请求量超过10次,并且慢调用比例不低于0.5,则触发熔断,熔断时长为5秒。然后进入half-open状态,放行一次请求做测试。

案例

需求:给 UserClient的查询用户接口设置降级规则,慢调用的RT阈值为50ms,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5

1)设置慢调用

修改user-service中的/user/{id}这个接口的业务。通过休眠模拟一个延迟时间:

在这里插入图片描述

@GetMapping("/{id}")
    public User queryById(@PathVariable("id") Long id,
                          @RequestHeader(value = "Truth", required = false) String truth) throws InterruptedException {
        if (id == 1) {
            //休眠,触发熔断
            Thread.sleep(60);
        }
        return userService.queryById(id);
    }

此时,orderId=101的订单,关联的是id为1的用户,调用时长为60ms:

在这里插入图片描述

orderId=102的订单,关联的是id为2的用户,调用时长为非常短;
在这里插入图片描述

2)设置熔断规则

下面,给feign接口设置降级规则:

在这里插入图片描述

规则:
在这里插入图片描述

超过50ms的请求都会被认为是慢请求

3)测试

在浏览器访问:http://localhost:8088/order/101,快速刷新5次,可以发现:

在这里插入图片描述

触发了熔断,请求时长缩短至5ms,快速失败了,并且走降级逻辑,返回的null

在浏览器访问:http://localhost:8088/order/102,竟然也被熔断了:
在这里插入图片描述

3.3.2.异常比例、异常数

异常比例或异常数:统计指定时间内的调用,如果调用次数超过指定请求数,并且出现异常的比例达到设定的比例阈值(或超过指定异常数),则触发熔断。

例如,一个异常比例设置:

在这里插入图片描述

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于0.4,则触发熔断。

一个异常数设置:

在这里插入图片描述

解读:统计最近1000ms内的请求,如果请求量超过10次,并且异常比例不低于2次,则触发熔断。

案例

需求:给 UserClient的查询用户接口设置降级规则,统计时间为1秒,最小请求数量为5,失败阈值比例为0.4,熔断时长为5s

1)设置异常请求

首先,修改user-service中的/user/{id}这个接口的业务。手动抛出异常,以触发异常比例的熔断:

在这里插入图片描述

也就是说,id 为 2时,就会触发异常

2)设置熔断规则

下面,给feign接口设置降级规则:

在这里插入图片描述

规则:

在这里插入图片描述

在5次请求中,只要异常比例超过0.4,也就是有2次以上的异常,就会触发熔断。

3)测试

在浏览器快速访问:http://localhost:8088/order/102,快速刷新5次,触发熔断:

在这里插入图片描述

此时,我们去访问本来应该正常的103:

在这里插入图片描述

4.授权规则

授权规则可以对请求方来源做判断和控制。

4.1.授权规则

4.1.1.基本规则

授权规则可以对调用方的来源做控制,有白名单和黑名单两种方式。

  • 白名单:来源(origin)在白名单内的调用者允许访问

  • 黑名单:来源(origin)在黑名单内的调用者不允许访问

点击左侧菜单的授权,可以看到授权规则:

在这里插入图片描述

  • 资源名:就是受保护的资源,例如/order/{orderId}

  • 流控应用:是来源者的名单,

    • 如果是勾选白名单,则名单中的来源被许可访问。
    • 如果是勾选黑名单,则名单中的来源被禁止访问。

比如:

在这里插入图片描述

我们允许请求从gateway到order-service,不允许浏览器访问order-service,那么白名单中就要填写网关的来源名称(origin)

4.1.2.如何获取origin

Sentinel是通过RequestOriginParser这个接口的parseOrigin来获取请求的来源的。

public interface RequestOriginParser {
    /**
     * 从请求request对象中获取origin,获取方式自定义
     */
    String parseOrigin(HttpServletRequest request);
}

这个方法的作用就是从request对象中,获取请求者的origin值并返回。

默认情况下,sentinel不管请求者从哪里来,返回值永远是default,也就是说一切请求的来源都被认为是一样的值default。

因此,我们需要自定义这个接口的实现,让不同的请求,返回不同的origin

例如order-service服务中,我们定义一个RequestOriginParser的实现类:


@Component
public class HeaderOriginParser implements RequestOriginParser {
    @Override
    public String parseOrigin(HttpServletRequest request) {
        // 1.获取请求头
        String origin = request.getHeader("origin");
        // 2.非空判断
        if (StringUtils.isEmpty(origin)) {
            origin = "blank";
        }
        return origin;
    }
}

我们会尝试从request-header中获取origin值。

4.1.3.给网关添加请求头

既然获取请求origin的方式是从reques-header中获取origin值,我们必须让所有从gateway路由到微服务的请求都带上origin头

这个需要利用之前学习的一个GatewayFilter来实现,AddRequestHeaderGatewayFilter。

修改gateway服务中的application.yml,添加一个defaultFilter:

spring:
  cloud:
    gateway:
      default-filters:
        - AddRequestHeader=origin,gateway
      routes:
       # ...略

这样,从gateway路由的所有请求都会带上origin头,值为gateway。而从其它地方到达微服务的请求则没有这个头。

4.1.4.配置授权规则

接下来,我们添加一个授权规则,放行origin值为gateway的请求。

在这里插入图片描述

配置如下:
在这里插入图片描述

现在,我们直接跳过网关,访问order-service服务:

在这里插入图片描述

通过网关访问:http://localhost:10010/order/101?authorization=admin

在这里插入图片描述

4.2.自定义异常结果

默认情况下,发生限流、降级、授权拦截时,都会抛出异常到调用方。异常结果都是flow limmiting(限流)。这样不够友好,无法得知是限流还是降级还是授权拦截。

4.2.1.异常类型

而如果要自定义异常时的返回结果,需要实现BlockExceptionHandler接口:

public interface BlockExceptionHandler {
    /**
     * 处理请求被限流、降级、授权拦截时抛出的异常:BlockException
     */
    void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception;
}

这个方法有三个参数:

  • HttpServletRequest request:request对象
  • HttpServletResponse response:response对象
  • BlockException e:被sentinel拦截时抛出的异常

这里的BlockException包含多个不同的子类:

异常说明
FlowException限流异常
ParamFlowException热点参数限流的异常
DegradeException降级异常
AuthorityException授权规则异常
SystemBlockException系统规则异常

4.2.2.自定义异常处理

下面,我们就在order-service定义一个自定义异常处理类:


@Component
public class SentinelExceptionHandler implements BlockExceptionHandler {
    @Override
    public void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {
        String msg = "未知异常";
        int status = 429;

        if (e instanceof FlowException) {
            msg = "请求被限流了";
        } else if (e instanceof ParamFlowException) {
            msg = "请求被热点参数限流";
        } else if (e instanceof DegradeException) {
            msg = "请求被降级了";
        } else if (e instanceof AuthorityException) {
            msg = "没有权限访问";
            status = 401;
        }

        response.setContentType("application/json;charset=utf-8");
        response.setStatus(status);
        response.getWriter().println("{\"msg\": " + msg + ", \"status\": " + status + "}");
    }
}

重启测试,在不同场景下,会返回不同的异常消息.

限流:

在这里插入图片描述

授权拦截时:

在这里插入图片描述

5.规则持久化

现在,sentinel的所有规则都是内存存储,重启后所有规则都会丢失。在生产环境下,我们必须确保这些规则的持久化,避免丢失。

5.1.规则管理模式

规则是否能持久化,取决于规则管理模式,sentinel支持三种规则管理模式:

  • 原始模式:Sentinel的默认模式,将规则保存在内存,重启服务会丢失。
  • pull模式
  • push模式

5.1.1.pull模式

pull模式:控制台将配置的规则推送到Sentinel客户端,而客户端会将配置规则保存在本地文件或数据库中。以后会定时去本地文件或数据库中查询,更新本地规则。

在这里插入图片描述

5.1.2.push模式

push模式:控制台将配置规则推送到远程配置中心,例如Nacos。Sentinel客户端监听Nacos,获取配置变更的推送消息,完成本地配置更新。

在这里插入图片描述

5.2.实现push模式

详细步骤可以参考《sentinel规则持久化》:

Sentinel 规则持久化

一、修改order-service服务

修改OrderService,让其监听Nacos中的sentinel规则配置。

具体步骤如下:

1.引入依赖

在order-service中引入sentinel监听nacos的依赖:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
2.配置nacos地址

在order-service中的application.yml文件配置nacos地址及监听的配置信息:

spring:
  cloud:
    sentinel:
      datasource:
        flow:
          nacos:
            server-addr: localhost:8848 # nacos地址
            dataId: orderservice-flow-rules
            groupId: SENTINEL_GROUP
            rule-type: flow # 还可以是:degrade、authority、param-flow
二、修改sentinel-dashboard源码

SentinelDashboard默认不支持nacos的持久化,需要修改源码。

1. 解压

解压课前资料中的sentinel源码包:

在这里插入图片描述

然后并用IDEA打开这个项目,结构如下:

在这里插入图片描述

2. 修改nacos依赖

在sentinel-dashboard源码的pom文件中,nacos的依赖默认的scope是test,只能在测试时使用,这里要去除:

在这里插入图片描述

将sentinel-datasource-nacos依赖的scope去掉:

<dependency>
    <groupId>com.alibaba.csp</groupId>
    <artifactId>sentinel-datasource-nacos</artifactId>
</dependency>
3. 添加nacos支持

在sentinel-dashboard的test包下,已经编写了对nacos的支持,我们需要将其拷贝到main下。

在这里插入图片描述

4. 修改nacos地址

然后,还需要修改测试代码中的NacosConfig类:

在这里插入图片描述

修改其中的nacos地址,让其读取application.properties中的配置:

在这里插入图片描述

在sentinel-dashboard的application.properties中添加nacos地址配置:

nacos.addr=localhost:8848
5. 配置nacos数据源

另外,还需要修改com.alibaba.csp.sentinel.dashboard.controller.v2包下的FlowControllerV2类:

在这里插入图片描述

让我们添加的Nacos数据源生效:

在这里插入图片描述

6. 修改前端页面

接下来,还要修改前端页面,添加一个支持nacos的菜单。

修改src/main/webapp/resources/app/scripts/directives/sidebar/目录下的sidebar.html文件:

在这里插入图片描述

将其中的这部分注释打开:

在这里插入图片描述

修改其中的文本:

在这里插入图片描述

7. 重新编译、打包项目

运行IDEA中的maven插件,编译和打包修改好的Sentinel-Dashboard:
在这里插入图片描述

8.启动

启动方式跟官方一样:

java -jar sentinel-dashboard.jar

如果要修改nacos地址,需要添加参数:

java -jar -Dnacos.addr=localhost:8848 sentinel-dashboard.jar
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值