本篇只给出实现的代码,下一篇将讲一讲实现的原理,及其Adline网络中的LMS算法原理。
包含两个类:
package com.cgjr.com; import java.security.DigestInputStream; import java.util.Arrays; import org.neuroph.core.data.DataSet; import org.neuroph.core.data.DataSetRow; import org.neuroph.core.events.LearningEvent; import org.neuroph.core.events.LearningEventListener; import org.neuroph.util.TransferFunctionType; public class AdalineDemo implements LearningEventListener { public final static int CHAR_WIDTH = 5; public final static int CHAR_HEIGHT = 7; public static String[][] DIGITS = { { " 000 ", "0 0", "0 0", "0 0", "0 0", "0 0", " 000 " }, { " 0 ", " 00 ", "0 0 ", " 0 ", " 0 ", " 0 ", " 0 " }, { " 000 ", "0 0", " 0", " 0 ", " 0 ", " 0 ", "00000" }, { " 000 ", "0 0", " 0", " 000 ", " 0", "0 0", " 000 " }, { " 0 ", " 00 ", " 0 0 ", "0 0 ", "00000", " 0 ", " 0 " }, { "00000", "0 ", "0 ", "0000 ", " 0", "0 0", " 000 " }, { " 000 ", "0 0", "0 ", "0000 ", "0 0", "0 0", " 000 " }, { "00000", " 0", " 0", " 0 ", " 0 ", " 0 ", "0 " }, { " 000 ", "0 0", "0 0", " 000 ", "0 0", "0 0", " 000 " }, { " 000 ", "0 0", "0 0", " 0000", " 0", "0 0", " 000 " } }; public static void main(String[] args) { Adaline ada = new Adaline(CHAR_WIDTH * CHAR_HEIGHT,DIGITS.length,0.01d,TransferFunctionType.LINEAR); DataSet ds = new DataSet(CHAR_WIDTH * CHAR_HEIGHT, DIGITS.length); for (int i = 0; i < DIGITS.length; i++) { //一个数字符号就是一个训练的数据,第0个数字的的期望输出为0,第一个数字的期望输出为1等等。 ds.addRow(createTrainDataRow(DIGITS[i],i)); } //ada.getLearningRule().addListener(new AdalineDemo()); ada.learn(ds); for (int i = 0; i < DIGITS.length; i++) { ada.setInput(image2data(DIGITS[i])); ada.calculate(); printDIGITS(DIGITS[i]); System.out.println(maxIndex(ada.getOutput())); System.out.println(Arrays.toString(ada.getOutput())); System.out.println(); } } private static int maxIndex(double[] output) { //这其实就是选出最接近一的那个 double maxData=output[0]; int maxIndex=0; for (int i = 0; i < output.length; i++) { if(maxData<output[i]){ maxData=output[i]; maxIndex=i; } } return maxIndex; } private static void printDIGITS(String[] image) { for (int i = 0; i < image.length; i++) { System.out.println(image[i]); } System.out.println("\n"); } private static DataSetRow createTrainDataRow(String[] image, int idealValue) { //设置所有的为输出为负一,只有当那个等于 double[] output=new double[DIGITS.length]; for (int i = 0; i < output.length; i++) { output[i]=-1; } double[] input=image2data(image); output[idealValue]=1; DataSetRow dsr=new DataSetRow(input,output); return dsr; } //将图像转换为数字,空格的地方为-1,不空格的地方为1 private static double[] image2data(String[] image) { double[] input=new double[CHAR_WIDTH*CHAR_HEIGHT]; //行的长度,即为字符的长度,为整个字体的高度 for (int row = 0; row < CHAR_HEIGHT; row++) { //有多少个列 for (int col = 0; col < CHAR_WIDTH; col++) { int index=(row*CHAR_WIDTH)+col; char ch=image[row].charAt(col); input[index]=ch=='0'?1:-1; } } return input; } @Override public void handleLearningEvent(LearningEvent event) { // TODO Auto-generated method stub } }
网络类:
package com.cgjr.com; import org.neuroph.core.Layer; import org.neuroph.core.NeuralNetwork; import org.neuroph.nnet.comp.neuron.BiasNeuron; import org.neuroph.nnet.learning.LMS; import org.neuroph.util.ConnectionFactory; import org.neuroph.util.LayerFactory; import org.neuroph.util.NeuralNetworkFactory; import org.neuroph.util.NeuralNetworkType; import org.neuroph.util.NeuronProperties; import org.neuroph.util.TransferFunctionType; public class Adaline extends NeuralNetwork { /** * The class fingerprint that is set to indicate serialization compatibility * with a previous version of the class. */ private static final long serialVersionUID = 1L; /** * Creates new Adaline network with specified number of neurons in input * layer * * @param inputNeuronsCount * number of neurons in input layer */ public Adaline(int inputNeuronsCount, int outputNeuronsCount, double learnRate, TransferFunctionType transferFunction) { this.createNetwork(inputNeuronsCount, outputNeuronsCount, learnRate,transferFunction); } /** * Creates adaline network architecture with specified number of input * neurons * * @param inputNeuronsCount * number of neurons in input layer */ private void createNetwork(int inputNeuronsCount, int outputNeuronsCount, double learnRate, TransferFunctionType transferFunction) { // set network type code this.setNetworkType(NeuralNetworkType.ADALINE); // create input layer neuron settings for this network NeuronProperties inNeuronProperties = new NeuronProperties(); inNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); // createLayer input layer with specified number of neurons Layer inputLayer = LayerFactory.createLayer(inputNeuronsCount, inNeuronProperties); inputLayer.addNeuron(new BiasNeuron()); // add bias neuron (always 1, // and it will act as bias input // for output neuron) this.addLayer(inputLayer); // create output layer neuron settings for this network NeuronProperties outNeuronProperties = new NeuronProperties(); if (transferFunction == TransferFunctionType.LINEAR) { outNeuronProperties.setProperty("transferFunction", TransferFunctionType.LINEAR); } else { outNeuronProperties.setProperty("transferFunction", TransferFunctionType.RAMP); outNeuronProperties.setProperty("transferFunction.slope", new Double(1)); outNeuronProperties.setProperty("transferFunction.yHigh", new Double(1)); outNeuronProperties.setProperty("transferFunction.xHigh", new Double(1)); outNeuronProperties.setProperty("transferFunction.yLow", new Double(-1)); outNeuronProperties.setProperty("transferFunction.xLow", new Double(-1)); } // createLayer output layer (only one neuron) Layer outputLayer = LayerFactory.createLayer(outputNeuronsCount, outNeuronProperties); this.addLayer(outputLayer); // createLayer full conectivity between input and output layer ConnectionFactory.fullConnect(inputLayer, outputLayer); // set input and output cells for network NeuralNetworkFactory.setDefaultIO(this); // set LMS learning rule for this network LMS l = new LMS(); l.setLearningRate(learnRate); this.setLearningRule(l); } }
运行的结果截图: