工作笔记

从科学家手里,接取火种,然后燎原大地。。。

排名算法(三)--排序学习

Learning to rank(简写 LTR、L2R) 也叫排序学习,指的是机器学习中任何用于排序的技术。 目录 一、LTR引言 1.1 LTR的出现背景 1.2 LTR基本框架 二、训练数据的获取 2.1 人工标注 2.2 搜索日志 2.3...

2019-05-19 14:22:33

阅读数 1107

评论数 2

关联分析(三)--GSP算法

转自:http://www.cnblogs.com/liuqing910/p/8964863.html 关联规则--Apriori算法部分讨论的关联模式概念都强调同时出现关系,而忽略数据中的序列信息(时间/空间): 时间序列:顾客购买产品X,很可能在一段时间内购买产品Y; 空间序列:在某个点...

2019-05-19 13:17:44

阅读数 458

评论数 2

聚类算法综述(二)

看到一篇总结文章,挺好。转自:https://blog.csdn.net/abc200941410128/article/details/78541273。 一、简要介绍 1、聚类概念 聚类就是按照某个特定标准(如距离准则)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,...

2019-05-10 13:39:57

阅读数 938

评论数 6

系统学习NLP(二十二)--关键词提取算法总结

先说一下自动文摘的方法。自动文摘(Automatic Summarization)的方法主要有两种:Extraction和Abstraction。其中Extraction是抽取式自动文摘方法,通过提取文档中已存在的关键词,句子形成摘要;Abstraction是生成式自动文摘方法,通过建立抽象的语意...

2019-05-04 18:09:48

阅读数 1367

评论数 5

系统学习NLP(二十一)--SWEM

这篇发表在 ACL 2018 上的论文来自于杜克大学 Lawrence Carin 教授的实验室。文章重新审视了 deep learning models(例如 CNN, LSTM)在各类 NLP 任务中的必要性。 通过大量的实验探究(17 个数据集),作者发现对于大多数的 NLP 问题,在 w...

2019-03-19 10:05:25

阅读数 699

评论数 0

系统学习NLP(二十)--文本聚类

转自:https://zhuanlan.zhihu.com/p/40991165 1:什么是文本聚类 先说说聚类的概念,聚类又称群分析,是数据挖掘的一种重要的思想,聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是多维空...

2019-03-14 10:56:53

阅读数 198

评论数 0

系统学习NLP(十九)--文本分类之FastText

转自:https://blog.csdn.net/sinat_26917383/article/details/54850933 FastText是Facebook开发的一款快速文本分类器,提供简单而高效的文本分类和表征学习的方法,不过这个项目其实是有两部分组成的,一部分是这篇文章介绍的 fast...

2019-03-14 10:41:05

阅读数 126

评论数 0

系统学习NLP(十八)--文本分类概述

转自:https://blog.csdn.net/u014248127/article/details/80774668 文本分类问题: 给定文档p(可能含有标题t),将文档分类为n个类别中的一个或多个 文本分类应用: 常见的有垃圾邮件识别,情感分析 文本分类方向: 主要有二分类,多分类,多标...

2019-03-14 10:15:46

阅读数 101

评论数 0

系统学习NLP(十七)--文本相似度

转自:https://blog.csdn.net/qq_28031525/article/details/79596376   在自然语言处理(Natural Language Processing, NLP)中,经常会涉及到如何度量两个文本的相似度问题。在诸如对话系统(Dialog system...

2019-03-13 20:23:08

阅读数 386

评论数 0

系统学习NLP(十六)--DSSM

转自:http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语义相似...

2019-03-12 20:30:50

阅读数 145

评论数 0

系统学习NLP(十五)--seq2seq

转自:https://blog.csdn.net/Jerr__y/article/details/53749693 1. RNN基础 对于RNN,我看到讲得最通俗易懂的应该是Andrej发的博客: The Unreasonable Effectiveness of Recurrent Neura...

2019-03-12 20:07:40

阅读数 126

评论数 0

系统学习NLP(十四)--句子向量与篇章向量

转自:https://blog.csdn.net/qq_35082030/article/details/72582103 这是Tomas Mikolov的一篇关于段落向量和句子向量的论文。本文是我翻译加自我理解的结果,如需要更详细的介绍,请看英文文献。 摘要 许多机器翻译的算法都需要使用固定长度...

2019-03-11 19:08:17

阅读数 147

评论数 0

系统学习NLP(十三)--词向量(word2vec原理)

词向量简介 自然语言是一套用来表达含义的复杂系统。在这套系统中,词是表义的基本单元。在机器学习中,如何使用向量表示词? 顾名思义,词向量是用来表示词的向量,通常也被认为是词的特征向量。近年来,词向量已逐渐成为自然语言处理的基础知识。 一种最简单的词向量方式是one-hot represent...

2019-03-10 12:14:43

阅读数 169

评论数 0

系统学习NLP(十二)--文本表示综述

文本表示,简单的说就是不将文本视为字符串,而视为在数学上处理起来更为方便的向量(也就是文本特征抽取)。而怎么把字符串变为向量,就是文本表示的核心问题。 文本表示,基于类型分为: 长文本表示 短文本表示(句子) 词表示 关于文本表示,研究者从不同的角度出发,提出大量的文本表示模型。本文重点梳...

2019-03-10 11:23:02

阅读数 113

评论数 0

系统学习NLP(十一)--命名实体识别

转自:https://www.cnblogs.com/bep-feijin/articles/9650898.html 命名实体识别(Named EntitiesRecognition, NER)是自然语言处理(Natural LanguageProcessing, NLP)的一个基础任务。其目...

2019-03-09 20:05:29

阅读数 260

评论数 0

系统学习NLP(十)--词性标注算法综述

词性标注:将句子中兼类词的词性根据上下文唯一地确定下来。词性(part-of-speech)是词汇基本的语法属性,通常也称为词类。词性标注就是在给定句子中判定每个词的语法范畴,确定其词性并加以标注的过程,是中文信息处理面临的重要基础性问题。 和分词一样,中文词性标注也存在着很多难点,比如一...

2019-03-09 19:38:01

阅读数 103

评论数 0

系统学习NLP(九)--中文分词算法综述

转自:https://zhuanlan.zhihu.com/p/33261835挺好的,推荐! 什么是中文分词 与大部分印欧语系的语言不同,中文在词与词之间没有任何空格之类的显示标志指示词的边界。因此,中文分词是很多自然语言处理系统中的基础模块和首要环节。 下面以jieba的示例给读者一个对...

2019-03-08 16:12:16

阅读数 102

评论数 0

系统学习NLP(八)--中文分词整理

中文分词概述 词是最小的能够独立活动的有意义的语言成分,一般分词是自然语言处理的第一项核心技术。英文中每个句子都将词用空格或标点符号分隔开来,而在中文中很难对词的边界进行界定,难以将词划分出来。在汉语中,虽然是以字为最小单位,但是一篇文章的语义表达却仍然是以词来划分的。因此处理中文文本时,需要进...

2019-03-08 11:12:21

阅读数 228

评论数 0

图像检索(二)--综述(2016年之前)

转自:https://blog.csdn.net/l7H9JA4/article/details/80569458 前言 基于内容的图像检索任务(CBIR)长期以来一直是计算机视觉领域重要的研究课题,自20世纪90年代早期以来,研究人员先后设计了图像的全局特征,局部特征,卷积特征的方法对CBI...

2019-03-07 00:21:46

阅读数 3645

评论数 0

图像检索(一)--综述

转自:https://baijiahao.baidu.com/s?id=1619752354929282906&wfr=spider&for=pc 图像检索算法因何而起? 网络时代,随着各种社交网络的兴起,网络中图片,视频数据每天都以惊人的速度增...

2019-03-06 23:53:13

阅读数 1404

评论数 0

提示
确定要删除当前文章?
取消 删除