工作笔记

从科学家手里,接取火种,然后燎原大地。。。

文字识别(一)--综述

文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分,本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR...

2019-02-17 12:48:15

阅读数 104

评论数 0

决策树(十三)--XGBoost参数调优完全指南

转自:https://blog.csdn.net/han_xiaoyang/article/details/52665396 1. 简介 如果你的预测模型表现得有些不尽如人意,那就用XGBoost吧。XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则...

2019-02-15 01:02:16

阅读数 1115

评论数 0

运筹优化(十九)--决策论基础及其最优化求解

研究决策的问题包括:决策的基本原理、决策的程序、决策的信息、决策的方法(定量与定性的方法)、决策的风险、决策中的人因素、决策的思维方式、决策的组织、决策的实施 等。 决策科学包括的内容十分广泛:涉及社会学、决策心理学、决策行为学、决策的量化方 法和评价、决策支持系统和决策自动化等多学科和多领域的...

2019-01-27 09:22:40

阅读数 927

评论数 0

运筹优化(十八)--对策论基础及其最优化求解

对策也叫博弈 , 是自古以来的政治家和军事家都很注意研究的问题。 作为一门正式学科,是在20世纪40年代形成并发展起来的。直到1944年冯·诺依曼(von Neumann) 与摩根斯特恩(O .Morgenstern)的《博弈论与经济行为》一书出版,标志着现代系统博弈理论的初步形成。书中提出的标准...

2019-01-26 13:49:47

阅读数 878

评论数 0

运筹优化(十七)--存储论基础及其最优化求解

工厂为了生产, 必须储存一些原料 , 把这些储存物简称存储。生产时从存储中取出一定数量的原料消耗掉, 使存储减少。生产不断进行, 存储不断减少 , 到一定时刻必须对存储给以补充,否则存储用完了, 生产无法进行。 商店必须储存一些商品(即存储) ,营业时卖掉一部分商品使存储减少, 到一定的时候 又...

2019-01-24 23:59:00

阅读数 1536

评论数 0

运筹优化(十六)--排队论基础及其最优化求解

排队过程的一般表示 下图1就是排队过程的一般模型。各个顾客由顾客源(总体)出发,到达服务机构 (服务台、服务员)前排队等候接受服务, 服务完成后就离开。排队结构指队列的数目和排列方式 , 排队规则和服务规则是说明顾客在排队系统中按怎样的规 则、次序接受服务的。我们所说的排队系统就指图中虚线所包括...

2019-01-23 12:11:59

阅读数 915

评论数 0

运筹优化(十五)--应用模型之分配问题

一般分配模型 一、问题描述 问题描述:N个人分配N项任务,一个人只能分配一项任务,一项任务只能分配给一个人,将一项任务分配给一个人是需要支付报酬,如何分配任务,保证支付的报酬总数最小。 问题数学描述:    注意,这个规划问题是整数线性规划(ILP)问题,也就是说,两个约束方程,保证每个...

2019-01-21 22:48:02

阅读数 1538

评论数 0

运筹优化(十四)--离散优化的启发式算法

启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。也就是说,在允许运行时长足够长的 情况下,确保得到一个最优方案。但是大量重要的ILP和INLP问题,并不存在多项式时间的解法,因此,启发式算法可以这样定义:一个基于直观或经验...

2019-01-19 21:41:33

阅读数 944

评论数 0

运筹优化(十三)--大规模优化方法

针对因为算例的规模过大或者结果过于复杂而无法整体求解的数学模型,将原味分解成多个足够简单、可以单独迭代直接求解的子问题,伴随的主问题结合所有子问题的结果给出模型的精确或者近似精确的最优解,并将最优解相关的信息传递给子问题用以更新模型中相应的参数。 列生成算法 列生成算法通常被应用于求解大规模整...

2019-01-19 15:23:51

阅读数 941

评论数 0

运筹优化(十二)--带约束非线性规划(NLP)

线性约束的非线性规划 许多可以被有效解决的大型非线性规划中所有或者几乎所有的约束,都是线性的。只是将目标函数扩展为非线性。相对来说容易解决。 下面四种规划是特殊的NLP问题 凸规划 若最优化问题的目标函数为凸函数,不等式约束函数也为凸函数,等式约束函数是仿射的,则称该最优化问题为凸规划。凸...

2019-01-18 13:16:31

阅读数 895

评论数 0

运筹优化(十一)--无约束非线性规划

这个系列将非线性规划是以“不是什么“定义的,也就是说,之前的线性规划模型使用连续决策变量,线性约束和线性目标函数,而非线性规划涵盖了所有其他单目标,连续决策变量的规划模型。意味着,非线性规划有许多不同的形式和算法。其中,有的有模型约束,有的则只有目标函数。在许多模型中,微积分能够得到可以利用的导数...

2019-01-18 13:16:09

阅读数 885

评论数 0

运筹优化(十)--整数规划求解

分支界定法 1.分枝定界法的思想 分枝定界法通过增加附加约束条件,使整数最优解最终成为线性规划的一个极点(顶点),于是整个问题就可使用单纯形法找到这个整数最优解;对有约束条件的最优化问题(其可行解为有限数)的可行解空间恰当地进行系统搜索,这就是分枝与定界的内容。通常,把全部可行解空间反复地分割...

2019-01-17 21:50:21

阅读数 917

评论数 0

运筹优化(九)--整数规划模型

一类规划问题中如果要求部分或全部决策变量是正整数,则称之为整数规划(Integer Programming,简称IP)。例如,所要求解的是机器设备的台数、完成工作的人数或装货的汽车数等。整数规划中要求全部变量都限制为(非负)整数的,称为纯整数规划(Pure Integer Programming)...

2019-01-17 18:58:53

阅读数 890

评论数 0

运筹优化(八)--图与网络优化

关于图的基本概念 图论(一)--基础概念 图论(二)--各种图介绍 图论(三)--各种基础图算法总结 关于树的基本概念 1.树的概念 一个无圈并且连通的无向图称为树图或简称为树(Tree)。 图1是一个连通图,图2中的两个图都是树。 如在有线通讯网和交通网中,在保证节点连通的条件下...

2019-01-16 15:00:10

阅读数 911

评论数 0

运筹优化(七)--动态规划解析

其实,在各种算法领域,动态规划的思想随处可见,用同事的话说,就是一种很朴素的方法,我之所以记录这么多文字,是今天看完动态规划,突然发现,有时候,静下心,好好理解理解最最基础的理论原理,你对这个算法的体会和理解会完全不一样。 动态规则是运筹学的一个分支, 它是解决多阶段决策过程最优化的一种数学方法...

2019-01-15 20:15:30

阅读数 2487

评论数 2

运筹优化(六)--目标规划定义及解法

1.目标规划的提出 线性规划的目标函数是单目标,但企业实际的经营管理中,需要完成多项指标,如企业计划中就包括产量、质量、利润、交货期等多项指标组成一个指标体系,均要全面完成,但是,这些指标的度量单位不同,各个指标的重要程度也不同,线性规划难以给出实际的答案,但是,在一定的约束条件下,多目标要求往...

2019-01-14 16:29:45

阅读数 992

评论数 0

运筹优化(五)--线性规划之内点法

近年来的内点算法主要有三大类: (1)投影尺度法,它是Karmarkar算法的原型。这个方法要求问题具有特殊的单纯形结构和最优目标值为零,在实际计算过程中, 需要用复杂的变换将实际问题转换为这种标准形式。因此, 投影尺度法在实际中应用较少。 (2)仿射尺度法,这是一种已经比较成熟和广泛的算法。...

2019-01-12 14:34:51

阅读数 934

评论数 0

运筹优化(四)--线性规划之对偶问题和灵敏度分析

线性规划的灵敏度分析,是指模型参数的变化,对优化结果的影响分析,分定性和定量两种。 定性分析 这里的定性分析,指参数变化,对结果的影响,比如不变,变坏或者变差。 松约束和紧约束 放宽优化模型中的约束条件会使模型最优值不变或者更优。收紧优化模型中的约束条件会使模型最优值不变或者更差。依据是因...

2019-01-12 14:33:54

阅读数 920

评论数 0

运筹优化(三)--线性规划之单纯形法

参考:http://www.cnblogs.com/ECJTUACM-873284962/    1.作用 单纯形法是解决线性规划问题的一个有效的算法。线性规划就是在一组线性约束条件下,求解线性目标函数最优解的问题。 2.线性规划的一般形式 在约束条件下,寻找目标函数z的最大值。 3...

2019-01-10 12:42:55

阅读数 929

评论数 0

运筹优化(二)--线性规划概念及应用模型

一、解决问题      线性规划问题是在一组线性约束下,求线性目标函数的最大最小值的问题。 二、数学模型 1、一般数学模型 2、矩阵表示 其中c,x都是列向量,A,Aeq是一个合适的矩阵,b,beq是合适的列向量。然后lb和ub是下限和上限(但是请注意lb是一个变量的名字)。 ...

2019-01-08 18:49:53

阅读数 937

评论数 0

提示
确定要删除当前文章?
取消 删除