PTA 树的结构及前中后序遍历

本文讨论了二叉树的同构性质,给出了一种判断两棵树是否同构的方法。同时,介绍了如何进行前序、中序、后序遍历,包括递归和非递归实现。此外,还提供了根据遍历序列重建二叉树的思路。
摘要由CSDN通过智能技术生成

03-树1 树的同构 (25分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
在这里插入图片描述
在这里插入图片描述
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。

思路:先用顺序表将二叉树装入,找出没有节点指向的根节点并返回。利用递归遍历所有节点,并考虑所有情况。主要难在同构的程序表示(左右节点交叉递归)。最后递归到某对比的两个节点A,B。这时的AB是先假定存在再判断是否真的存在。
在这里插入图片描述

#include <iostream>
#include <stdio.h>

using namespace std;

const int MaxTree = 10;

struct BinTree
{
   
	char name;
	char Left;
	char Right;
};
BinTree T1[MaxTree], T2[MaxTree]; //放有bintree结构的数组


int BulidTree(BinTree T[])
{
   
	int Root;
	int Nodenum;
	cin >>  Nodenum;
	int check[Nodenum];


	if (Nodenum) {
   
		for (int i = 0; i<Nodenum; i++) check[i] = 0;//令check全为0
		for (int i = 0; i <Nodenum; i++)
		{
   
			cin >> T[i].name >> T[i].Left >> T[i].Right;
			if (T[i].Left != '-') {
   
				T[i].Left = T[i].Left - '0';
				check[T[i].Left] = 1;//标记有数字
			}
			else T[i].Left = (int)-1;


			if (T[i].Right != '-') {
   
				T[i].Right = T[i].Right - '0';
				check[T[i].Right] = 1;
			}
			else T[i].Right = (int)-1;

		}
        int i = 0;
		for (; i < Nodenum; i++)//没有别人指向他的则是根节点
			if (!check[i]) break;  //找到未标记的则跳出for
		Root = i;
		return Root;
	}
	else
        return -1;
}


int Isomorphic(int R1, int R2)
{
   
	if ((R1 == -1) && (R2 == -1)) //当前节点都空
		return 1;
	if ((R1 == -1) && (R2 != -1) || (R1 != -1) && (R2 == -1)) //当前节点一边有一边无
		return 0;
	if (T1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值