03-树1 树的同构 (25分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
思路:先用顺序表将二叉树装入,找出没有节点指向的根节点并返回。利用递归遍历所有节点,并考虑所有情况。主要难在同构的程序表示(左右节点交叉递归)。最后递归到某对比的两个节点A,B。这时的AB是先假定存在再判断是否真的存在。
#include <iostream>
#include <stdio.h>
using namespace std;
const int MaxTree = 10;
struct BinTree
{
char name;
char Left;
char Right;
};
BinTree T1[MaxTree], T2[MaxTree]; //放有bintree结构的数组
int BulidTree(BinTree T[])
{
int Root;
int Nodenum;
cin >> Nodenum;
int check[Nodenum];
if (Nodenum) {
for (int i = 0; i<Nodenum; i++) check[i] = 0;//令check全为0
for (int i = 0; i <Nodenum; i++)
{
cin >> T[i].name >> T[i].Left >> T[i].Right;
if (T[i].Left != '-') {
T[i].Left = T[i].Left - '0';
check[T[i].Left] = 1;//标记有数字
}
else T[i].Left = (int)-1;
if (T[i].Right != '-') {
T[i].Right = T[i].Right - '0';
check[T[i].Right] = 1;
}
else T[i].Right = (int)-1;
}
int i = 0;
for (; i < Nodenum; i++)//没有别人指向他的则是根节点
if (!check[i]) break; //找到未标记的则跳出for
Root = i;
return Root;
}
else
return -1;
}
int Isomorphic(int R1, int R2)
{
if ((R1 == -1) && (R2 == -1)) //当前节点都空
return 1;
if ((R1 == -1) && (R2 != -1) || (R1 != -1) && (R2 == -1)) //当前节点一边有一边无
return 0;
if (T1