tensorflow
文章平均质量分 74
琥珀彩
这个作者很懒,什么都没留下…
展开
-
Batch Normalization (训练、测试、优点、缺点)
一、使用顺序:Conv=>BN=>ReLU=>dropout=>ConvBN本质上是解决传播过程中的梯度消失问题二、训练下图面试常考!训练时前向传导过程公式:理解:1. 这个可学习重构参数 γ、β,让我们的网络可以学习恢复出原始网络所要学习的特征分布。(因为如果没有 γ、β ,那相当于我这一层网络所学习到的特征分布被你搞坏了)2. 这个 scale 和 shift ,它们的主要作用就是找到一个线性和非线性的平衡点,既能享受非线性较强的表达能力,有.转载 2021-12-09 14:47:51 · 3053 阅读 · 0 评论 -
LeNet-5详解
一、前言LeNet-5出自论文Gradient-Based Learning Applied to Document Recognition,是一种用于手写体字符识别的非常高效的卷积神经网络。本文将从卷积神经网络结构的基础说起,详细地讲解每个网络层。论文下载:请到文章结尾处下载。二、卷积神经网络(Convolutional Neural Network, CNN)在讲解LeNet-5之前,让我们先看下CNN。卷积神经网络能够很好的利用图像的结构信息。LeNet-5是一个较简单的卷积神经网转载 2021-12-09 10:11:53 · 4813 阅读 · 0 评论 -
LSTMCell中num_units参数解释
前言关于LSTM原理: http://colah.github.io/posts/2015-08-Understanding-LSTMs/关于LSTM原理(译文):https://blog.csdn.net/Jerr__y/article/details/58598296关于Tensorflow+LSTM的使用:https://www.knowledgemapper.com/knowmap/knowbook/jasdeepchhabra94@gmail.comUnderstandingLSTMinTe转载 2021-12-01 15:13:55 · 622 阅读 · 1 评论 -
Tensorflow_datasets中batch(batch_size)和shuffle(buffer_size)理解
1.shuffle(buffer_size)tensorflow中的数据集类Dataset有一个shuffle方法,用来打乱数据集中数据顺序,训练时非常常用。其中shuffle方法有一个参数buffer_size,文档的解释如下:dataset.shuffle(buffer_size, seed=None, reshuffle_each_iteration=None)Randomly shuffles the elements of this dataset.This dataset f.转载 2021-08-19 23:13:54 · 3339 阅读 · 0 评论 -
SparseCategoricalCrossentropy
在搭建深度学习模型,构建损失函数经常用到交叉熵函数,同时用到SparseCategoricalCrossentropy。m = tf.keras.metrics.SparseCategoricalCrossentropy()m.update_state( [1, 2], [[0.05, 0.9, 0.05], [0.1, 0.8, 0.1]])# y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]# logits = log(y_p.转载 2021-05-15 17:52:12 · 3765 阅读 · 0 评论 -
Tensorflow 数据对象Dataset.shuffle()、repeat()、batch() 等用法
1.Dataset数据对象Dataset可以用来表示输入管道元素集合(张量的嵌套结构)和“逻辑计划“对这些元素的转换操作。在Dataset中元素可以是向量,元组或字典等形式。另外,Dataset需要配合另外一个类Iterator进行使用,Iterator对象是一个迭代器,可以对Dataset中的元素进行迭代提取。2.Dataset方法2.1 产生数据集2.1.1. from_tensor_slicesfrom_tensor_slices 用于创建dataset,其元素是给定张量的切片的元转载 2021-05-15 17:31:28 · 1135 阅读 · 0 评论 -
安装tensorflow成功,但import出错error
问题描述:安装tensorflow2.3.1版本,提示已经成功安装。C:\Users\***>pip install tensorflow-2.3.1-cp37-cp37m-win_amd64.whl但在import tensorflow时报错,报错截图如下:DLL load failed:The specified module could not be found.电脑的配置如下Windows 10 Enterprise 64-bitInter(R) Xeon(原创 2021-03-26 10:30:37 · 1494 阅读 · 0 评论 -
深度学习框架Keras中的embedding简单理解
(转载https://www.jianshu.com/p/a3f3033a7379)深度学习keras框架中的Embedding是一种用在在深度学习模型中把原始文本中的单词与向量相关联常用方法,在介绍Embedding之前,先了解以下几个概念:数值张量深度学习模型在处理文本数据时不会直接把原始文本数据作为输入,它只能处理数值张量。文本向量化文本向量化就是把文本数据转化成数值张量的过程,实现方法多是把文本分割成单词或者字符,再把单词或字符转换为一个向量。标记将文本分解而成的单词或字转载 2021-03-24 13:31:33 · 1160 阅读 · 0 评论 -
LayerNorm
MXnet LayerNormpytorch LayerNorm说明LayerNorm中不会像BatchNorm那样跟踪统计全局的均值方差,因此train()和eval()对LayerNorm没有影响。LayerNorm参数torch.nn.LayerNorm( normalized_shape: Union[int, List[int], torch.Size], eps: float = 1e-05, elementwise.原创 2021-01-14 10:42:22 · 24255 阅读 · 2 评论 -
使用tensorflow,官网中条目“Getting Started for ML Beginners”遇到的问题解决
Tensorflow学习(1)打算开始学习使用tensorflow,官网网址为:https://www.tensorflow.org/ 。对于国内的网络来说这个网址可能访问不到,那么可以使用:https://tensorflow.google.cn/。进来官网之后,新手的话首先先点击“get started”比较能熟悉这个工具。按照阅读材料进行tensorflow安装即可。安装成功之后,参考这个网...原创 2018-02-26 14:46:15 · 393 阅读 · 0 评论