转自:https://www.cnblogs.com/TheRoadToTheGold/p/8478697.html
求解A^x ≡ B mod P (P不一定是质数)的最小非负正整数解
先放几个同余定理:
一、判断如果B==1,那么x=0,算法结束
二、若gcd(A,P)不能整除 B,则 无解,算法结束
三、若gcd(A,P)!=1,令d=gcd(A,P),若d不能整除B,则无解,算法结束。
有
四、持续步骤三,直至 gcd(A,)=1
有
五、枚举 0<x<k,若有解,输出x,算法结束
六、对于x>=k,
A=,B=,P=
A,P 互素 ,
直接用BSGS 求 * A ^ x ≡ B mod P
所得结果再+k即可
#include<map>
#include<cmath>
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
map<int,int>mp;
void read(int &x)
{
x=0; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
}
int get_gcd(int a,int b) { return !b ? a : get_gcd(b,a%b); }
int Pow(int a,int b,int mod)
{
int res=1;
for(;b;a=1LL*a*a%mod,b>>=1)
if(b&1) res=1LL*res*a%mod;
return res;
}
int ex_BSGS(int A,int B,int C)
{
if(B==1) return 0;
int k=0,tmp=1,d;
while(1)
{
d=get_gcd(A,C);
if(d==1) break;
if(B%d) return -1;
B/=d; C/=d;
tmp=1LL*tmp*(A/d)%C;
k++;
//若tem==B,则原式可同除tem,化为A^(x-k)=1 mod(c),所以(x-k)=0,所以x=k;
if(tmp==B) return k;
}
mp.clear();
int mul=B;
mp[B]=0;
int m=ceil(sqrt(1.0*C));
for(int j=1;j<=m;++j)
{
mul=1LL*mul*A%C;
mp[mul]=j;
}
int am=Pow(A,m,C);
mul=tmp;
for(int j=1;j<=m;++j)
{
mul=1LL*mul*am%C;
if(mp.count(mul)) return j*m-mp[mul]+k;
}
return -1;
}
int main()
{
int A,C,B;
int ans;
while(1)
{
read(A); read(B); read(C);
if(!A) return 0;
ans=ex_BSGS(A,B,C);
if(ans==-1) puts("No Solution");
else cout<<ans<<'\n';
}
}