BSGS
介绍
这是一个求解 a x ≡ b ( m o d p ) a ^ {x} \equiv b \pmod p ax≡b(modp),的方法。并且 p p p是质数, a , p a, p a,p互质,费马小定理可知,这个式子有周期性,
我们一般取 m = s q r t ( p ) m = sqrt(p) m=sqrt(p),假设 x = i ∗ m + j , 0 < = i , j < = m x = i * m + j, 0 <= i, j <= m x=i∗m+j,0<=i,j<=m,则有
a i ∗ m + j ≡ b ( m o d p ) a ^ {i * m + j} \equiv b \pmod p ai∗m+j≡b(modp)
a i + m ≡ b a j ( m o d p ) a ^ {i + m} \equiv \frac {b} {a ^ j} \pmod p ai+m≡ajb(modp)
为了方便我们设 x = i ∗ m − j x = i * m - j x=i∗m−j,则有
a i ∗ m ≡ b ∗ a j ( m o d p ) a ^ {i * m} \equiv b * a ^ {j} \pmod p ai∗m≡b∗aj(modp)
所以我们只要通过一次枚举 j j j,记录下 b ∗ a j b * a ^ j b∗aj,再一次枚举 i i i去刚才枚举过的 j j j中寻找有没有符合要求的答案即可,整体复杂度是 p \sqrt {p} p的
P2485 [SDOI2011]计算器
模板题
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
// #include <cstdio>
// #include <iostream>
// #include <stdlib.h>
// #include <algorithm>
// #include <cmath>
#define mp make_pair
#define pb push_back
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}
void print(ll x) {
if(x < 10) {
putchar(x + 48);
return ;
}
print(x / 10);
putchar(x % 10 + 48);
}
ll quick_pow(ll a, ll n, ll mod) {
ll ans = 1;
while(n) {
if(n & 1) ans = (ans * a) % mod;
n >>= 1;
a = (a * a) % mod;
}
return ans;
}
ll quick_mult(ll a, ll b, ll mod) {
ll ans = 0;
while(b) {
if(b & 1) ans = (ans + a) % mod;
b >>= 1;
a = (a + a) % mod;
}
return ans;
}
ll ex_gcd(ll a, ll b, ll & x, ll & y) {
if(!b) {
x = 1, y = 0;
return a;
}
ll gcd = ex_gcd(b, a % b, x, y);
ll temp = x;
x = y;
y = temp - a / b * y;
return gcd;
}
void BSGC(ll a, ll b, ll p) {
map<ll, ll> MP;
int m = sqrt(p) + 1;
ll x = b, nex = quick_pow(a, m, p);
for(int i = 0; i <= m; i++) {
MP[x] = i;
x = (x * a) % p;
}
x = 1;
if(nex == 0) {
if(b == 0) {
puts("0");
}
else {
puts("Orz, I cannot find x!");
}
return ;
}
for(int i = 0; i <= m; i++) {
if(MP.count(x)) {
printf("%d\n", i * m - MP[x]);
return ;
}
x = (x * nex) % p;
}
puts("Orz, I cannot find x!");
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int n = read(), k = read();
for(int i = 1; i <= n; i++) {
ll a = read(), b = read(), p = read();
if(k == 1) {
printf("%lld\n", quick_pow(a, b, p));
}
else if(k == 2) {
ll x, y;
ll gcd = ex_gcd(a, p, x, y);
if(b % gcd) {
puts("Orz, I cannot find x!");
}
else {
b /= gcd;
x = (((x % p + p) % p) * b) % p;
printf("%lld\n", x);
}
}
else {
BSGC(a, b % p, p);
}
}
return 0;
}
2019牛客暑期多校训练营(第五场)C generator 2
思路
x 0 = x 0 x_0 = x_0 x0=x0
x 1 = a ∗ x 0 ∗ b x_1 = a * x_0 * b x1=a∗x0∗b
x 2 = a ∗ x 1 + b = a 2 ∗ x 0 + a ∗ b + b x_2 = a * x_1 + b = a ^{2} * x_0 + a * b + b x2=a∗x1+b=a2∗x0+a∗b+b
容易发现后项是一个等比数列求和
x n = a n x 0 + b ( 1 − a n ) 1 − a x_n = a ^ {n} x_0 + \frac {b (1 - a ^ n)} {1 - a} xn=anx0+1−ab(1−an)
我们要求 x n = v x_n = v xn=v,化简
a n x 0 + b ( 1 − a n ) 1 − a = v a ^ {n} x_0 + \frac {b (1 - a ^ n)} {1 - a} = v anx0+1−ab(1−an)=v
a n x 0 ( 1 − a ) + b ( 1 − a n ) = v ( 1 − a ) a ^{n} x_0(1 - a) + b (1 - a ^ n) = v(1 - a) anx0(1−a)+b(1−an)=v(1−a)
a n ( x 0 − a x 0 − b ) = v ( 1 − a ) − b a ^ n (x_0 - ax_0 - b) = v(1 - a) - b an(x0−ax0−b)=v(1−a)−b
a n = v ( 1 − a ) − b x 0 − a x 0 − b a^n =\frac {v (1 - a) - b} {x_0 - a x_0 - b} an=x0−ax0−bv(1−a)−b
上面式子都是 m o d p \mod p modp下的同余等式,为了方便写了 = = =
看到这里就简单了,我们要求解的是 n n n,显然右边这一坨都是已知的,我们假定为 B B B,求解 a n = B a ^ n = B an=B,这不就是个裸题了吗。
这道题目还要稍加分类讨论一下:
- a == 0
x 0 = x 0 , x i = b ( i > = 1 ) x_0 = x_0, x_i = b(i >= 1) x0=x0,xi=b(i>=1)
- a = = 1 a == 1 a==1
因为这种情况上面不能直接相除,所以我们需要特殊考虑 a i = b + i ∗ a a_i = b + i * a ai=b+i∗a
也就是求解 i ∗ a = v − b i * a = v - b i∗a=v−b,这个时候只要左右两边同时乘以 a a a的逆元即可得到我们要的 i i i
代码
/*
Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;
inline ll read() {
ll f = 1, x = 0;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f * x;
}
void print(ll x) {
if(x < 10) {
putchar(x + 48);
return ;
}
print(x / 10);
putchar(x % 10 + 48);
}
ll quick_pow(ll a, ll n, ll mod) {
ll ans = 1;
while(n) {
if(n & 1) ans = (ans * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return ans;
}
int main() {
// freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
int T = read();
while(T--) {
ll n = read(), x0 = read(), a = read(), b = read(), p = read();
ll x = 1, Unit = quick_pow(a, 1000, p);
unordered_map<ll, int> MP;
for(int i = 1; i <= 1000000; i++) {
x = (x * Unit) % p;
if(!MP.count(x)) {
MP[x] = i * 1000;
}
}
ll inv = quick_pow(((x0 - a * x0 - b) % p + p) % p, p - 2, p);
int t = read();
while(t--) {
ll v = read();
if(a == 0) {
if(v % p == x0 % p) {
puts("0");
}
else if(v % p == b % p) {
puts("1");
}
else {
puts("-1");
}
continue;
}
if(a == 1) {
ll ans = (((((v - x0) % p + p) % p) * quick_pow(b, p - 2, p))) % p;
if(ans < n) {
printf("%lld\n", ans);
}
else {
puts("-1");
}
continue;
}
v = (((v * (1 - a) - b) % p + p) % p * inv) % p;
if(Unit == 0) {
if(v == 0) {
puts("0");
}
else {
puts("-1");
}
continue;
}
x = v;
int ans = p + 1;
for(int i = 0; i <= 1000; i++) {
if(MP.count(x)) {
ans = min(ans, MP[x] - i);
}
x = (x * a) % p;
}
if(ans != p + 1 && ans < n) {
printf("%d\n", ans);
}
else {
puts("-1");
}
}
}
return 0;
}
BSGS拓展
介绍
求解 a x ≡ b ( m o d p ) a ^ x \equiv b \pmod p ax≡b(modp),但是 a , b a, b a,b不互质,这里就要用到我们的 E X B S G S EXBSGS EXBSGS了。
假定 a x + p y = b a ^ x + py = b ax+py=b
d 1 = g c d ( a , p ) , 如 果 有 解 则 一 定 : g c d ( a , p ) ∣ b d_1 = gcd(a, p),如果有解则一定:gcd(a, p) \mid b d1=gcd(a,p),如果有解则一定:gcd(a,p)∣b
得到 a x − 1 a d 1 + p d 1 y = b d 1 a ^{x - 1}\frac{a} {d_1} + \frac{p}{d_1}y = \frac {b} {d_1} ax−1d1a+d1py=d1b
如果 g c d ( a , p d 1 ) ! = 1 gcd(a, \frac{p} {d_1}) != 1 gcd(a,d1p)!=1,继续化简
d 2 = g c d ( a , p d 1 ) − > a x − 2 a 2 d 1 d 2 + p d 1 d 2 y = b d 1 d 2 d_2 = gcd(a, \frac{p} {d_1})->a ^{x - 2} \frac{a ^ 2} {d_1d_2} + \frac{p} {d_1d_2}y = \frac{b}{d_1d_2} d2=gcd(a,d1p)−>ax−2d1d2a2+d1d2py=d1d2b
如果 g c d ( a , p 2 d 1 d 2 ) ! = 1 gcd(a, \frac{p ^ 2} {d_1d_2}) != 1 gcd(a,d1d2p2)!=1
重复上面操作,最后得到式子
a x − n a n d 1 d 2 … … d n + p d 1 d 2 … … d n y = b d 1 d 2 … … d n a ^{x - n} \frac {a ^ n} {d_1d_2……d_n} + \frac{p}{d_1d_2……d_n}y = \frac{b}{d_1d_2……d_n} ax−nd1d2……dnan+d1d2……dnpy=d1d2……dnb
记 A = a x − n , A ′ = a n d 1 d 2 … … d n , P = p d 1 d 2 … … d n , B = b d 1 d 2 … … d n A = a {x - n}, A' = \frac{a^n}{d_1d_2……d_n}, P = \frac{p}{d_1d_2……d_n}, B = \frac{b} {d_1d_2……d_n} A=ax−n,A′=d1d2……dnan,P=d1d2……dnp,B=d1d2……dnb
则变成里求 A x − n ≡ B A ′ − 1 ( m o d P ) A^{x - n} \equiv B A'^{-1} \pmod{P} Ax−n≡BA′−1(modP)
记录进行了多少次 g c d gcd gcd求解,通过求 A ′ A' A′的逆元化简式子,再通过一次 B S G S BSGS BSGS求得 x − n x - n x−n,即可得到我们得答案 x x x
P4195 【模板】扩展BSGS
一定注意求逆元不能用费马小定理,我就入了这个坑。
/*
Author : lifehappy
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {
return b ? gcd(b, a % b) : a;
}
ll quick_pow(ll a, ll n, ll mod) {
ll ans = 1;
while(n) {
if(n & 1) ans = (ans * a) % mod;
a = (a * a) % mod;
n >>= 1;
}
return ans;
}
int exgcd(int a, int b, int & x, int & y) {
if(!b) {
x = 1, y = 0;
return a;
}
int gcd = exgcd(b, a % b, x, y);
int temp = x;
x = y;
y = temp - a / b * y;
return gcd;
}
int inv(int a, int b) {
int x, y;
exgcd(a, b, x, y);
return (x % b + b) % b;
}
int BSGS(ll a, ll b, ll p) {
int m = sqrt(p) + 1;
unordered_map<int, int> mp;
int x = b;
for(int i = 0; i <= m; i++) {
mp[x] = i;
x = (1ll * x * a) % p;
}
x = 1;
int Unit = quick_pow(a, m, p);
if(Unit == 0) {
if(b == 0) {
return 0;
}
else {
return -1;
}
}
for(int i = 1; i <= m; i++) {
x = (1ll * x * Unit) % p;
if(mp.count(x)) {
return i * m - mp[x];
}
}
return -1;
}
void EXBSGS(ll a, ll b, ll p) {
a %= p, b %= p;
if(b == 1 || p == 1) {
puts("0");
return ;
}
int cnt = 0, d, ad = 1;
while((d = gcd(a, p)) != 1) {
if(b % d) {
puts("No Solution");
return ;
}
cnt++;
b /= d, p /= d;
ad = (1ll * ad * a / d) % p;
if(ad == b) {
printf("%d\n", cnt);
return ;
}
}
int ans = BSGS(a % p, (1ll * b * inv(ad, p)) % p, p);
if(ans == -1) {
puts("No Solution");
}
else {
printf("%d\n", ans + cnt);
}
}
int main() {
// freopen("in.txt", "r", stdin);
ll a, b, p;
while(scanf("%lld %lld %lld", &a, &p, &b) && (a || b || p)) {
EXBSGS(a, b, p);
}
return 0;
}