UVa 10462 Is There A Second Way Left? (Kruskal,次小生成树)

这道题还是比较有考虑的价值的

求:判断是否有最小生成树,次小生成树,如果有次小生成树,则输出次小生成树的总权值

要注意的是,点和点之间是有重边的,要求次小生成树,就一定要保留所有重边

考虑到即要判断图是不是连通的,又要保存重边,所以Kruskal是首选,prim算法或许有解,但是本人实在是没有想出来怎么样比Kruskal能更加简单,如果大牛经过,求指点

次小生成树一定是最小生成树减一条边,再加一条边,枚举掉最小生成树中的边,一次求少一条边的图的最小生成树即可

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 110;
const int M = 220;
const int INF = 1000000000;
int n, m, T, ans1, ans2, ise[N], f[N];
struct edge {
    int u, v, cost;
}e[M];

bool cmp( edge a, edge b ) {
    return a.cost < b.cost;
}
int find ( int x ) {
    return f[x] == x ? x: f[x] = find(f[x]);
}
int Kru() {
    int ans = 0, num = 0, id = 0;
    for ( int i = 1; i <= n; ++i ) f[i] = i;
    for ( int i = 0; i < m; ++i ) {
        int x = e[i].u;
        int y = e[i].v;
        int a = find(x);
        int b = find(y);
        if ( a != b ) ise[id++] = i, f[a] = b, ans += e[i].cost;
    }
    for ( int i = 1; i <= n; ++i ) if ( i == find(i) ) num++;
    if ( num > 1 ) return INF;
    else return ans;
}
int Kru_1( int del ) {
    int ans = 0, num = 0;
    for ( int i = 1; i <= n; ++i ) f[i] = i;
    for ( int i = 0; i < m; ++i ) {
        if ( i == del ) continue;
        int x = e[i].u;
        int y = e[i].v;
        int a = find(x);
        int b = find(y);
        if ( a != b ) f[a] = b, ans += e[i].cost;
    }
    for ( int i = 1; i <= n; ++i ) if ( i == find(i) ) num++;
    if ( num > 1 ) return INF;
    else return ans;
}
int main()
{
    int idx = 1;
    scanf("%d", &T);
    while ( T-- ) {
        scanf("%d%d", &n, &m);
        for ( int i = 0; i < m; ++i ) 
            scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].cost);
        sort( e, e+m, cmp );
        ans1 = Kru(), ans2 = INF;
        printf("Case #%d : ", idx++);
        if ( ans1 == INF ) {
            printf("No way\n");
            continue;
        }
        for ( int i = 0; i < n-1; ++i ) {
            int x = ise[i];
            ans2 = min( ans2, Kru_1(x) );
        }
        if ( ans2 == INF ) printf("No second way\n");
        else printf("%d\n", ans2);
    }
}




评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值