HDU 4945 2048(DP)

HDU 4945 2048

题目链接

题意:给定一个序列,求有多少个子序列能合成2048

思路:把2,4,8..2048这些数字拿出来考虑就可以了,其他数字无论如何都不能参与组成,那么在这些数字基础上,dp[i][j]表示到第i个数字,和为j的情况数,然后对于每个数枚举取多少个,就可以利用组合数取进行状态转移,这里有一个剪枝,就是如果加超过2048了,那么后面数字的组合数的和全部都是加到2048上面,可以利用公式一步求解,这样的总体复杂度就可以满足题目了。然后这题时限卡得紧啊,10W内的逆元不先预处理出来就超时。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int MOD = 998244353;

inline void scanf_(int &num)//无负数
{
    char in;
    while((in=getchar()) > '9' || in<'0') ;
    num=in-'0';
    while(in=getchar(),in>='0'&&in<='9')
	num*=10,num+=in-'0';
}

int n, v[2049], mi[15], m, cnt[15];
int dp[15][2049], mi2[100005], invv[100005];
bool istwo[2049];

void init() {
    int num;
    m = 0;
    memset(cnt, 0, sizeof(cnt));
    for (int i = 0; i < n; i++) {
	scanf_(num);
	if (!istwo[num]) {
	    m++;
	    continue;
	}
	else cnt[v[num]]++;
    }
}

int inv(int n) {
    int ans = 1;
    int k = MOD - 2;
    while (k) {
	if (k&1) ans = (ll)ans * n % MOD;
	n = (ll)n * n % MOD;
	k >>= 1;
    }
    return ans;
}

int solve() {
    memset(dp, 0, sizeof(dp));
    dp[0][0] = 1;
    for (int i = 1; i <= 12; i++) {
	for (int j = 0; j <= 2048; j += mi[i]) {
	    if (dp[i - 1][j] == 0) continue;
	    int C = 1, s = 0;
	    int sum = j;
	    for (int k = 0; k <= cnt[i]; k++) {
		int x = sum;
		if (x == 2048) {
		    dp[i][x] = (ll)dp[i - 1][j] * (mi2[cnt[i]] - s) % MOD + dp[i][x];
		    if (dp[i][x] < 0) dp[i][x] += MOD;
		    if (dp[i][x] >= MOD) dp[i][x] -= MOD;
		    break;
		}
		if (x % mi[i + 1])
		    x = x - mi[i];
		dp[i][x] = (ll)dp[i - 1][j] * C % MOD + dp[i][x];
		if (dp[i][x] >= MOD) dp[i][x] -= MOD;
		s += C;
		if (s >= MOD) s -= MOD;
		C = (ll)C * (cnt[i] - k) % MOD * invv[k + 1] % MOD;
		sum += mi[i];
	    }
	}
    }
    return (ll)dp[12][2048] * mi2[m] % MOD;
}

int main() {
    memset(istwo, false, sizeof(istwo));
    memset(v, -1, sizeof(v));
    mi[0] = 0; v[0] = 0;
    for (int i = 1, j = 1; i <= 2048; i *= 2, j++) {
	istwo[i] = true;
	v[i] = j;
	mi[j] = i;
    }
    mi[13] = 4096;
    for (int i = 1; i <= 2048; i++) {
	if (v[i] == -1)
	    v[i] = v[i - 1];
    }
    mi2[0] = 1;
    for (int i = 1; i <= 100000; i++) {
	invv[i] = inv(i);
	mi2[i] = mi2[i - 1] * 2 % MOD;
    }
    int cas = 0;
    while (~scanf("%d", &n) && n) {
	init();
	printf("Case #%d: %d\n", ++cas, solve());
    }
    return 0;
}


### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值