2011 Asia Fuzhou Regional Contest

这两天做了套题,2011的福州区域赛,把基本算能做的7题做了,感觉这套题多是,两种算法糅合在一起,硬搞出一道题- - 而且有好几道题我是用到了rmq。。

A:暴力黑帅走的4个方向,然后去枚举每个红棋能不能攻击到就可以了,注意细节

B:先把每个月饼,加上(m - i) * s,这样就能消除等差数列的影响,然后每个订单处理出时间后now,在now 和 now - t中找出最小值这步用rmq即可,然后加上原先多加的部分

C:预处理每个点的最远点距离,先找出直径两点,然后从两点搜下去记录大的距离,然后就是一个双指针加rmq,双指针每次保证最大值最小值在满足的范围,查询用rmq

E:这题坑得不行,构造树不能建树,直接利用线段树,每次查询当前区间最左的数字,然后就是kmp去求匹配次数,问题在于不能些递归,会暴栈,要写非递归版深搜,而且空间要控制好,空间也卡得死

F:求出最小生成树,然后每个加权值的边,找一条除了这条边,能连通两个集合的最小边,和这条边选小的最优,那么问题在于如何找最小边,我是先做一个dfs序,然后枚举一条生成树上的边,对于一边集合枚举点,然后用rmq询问到另一个集合区间的最小值,由于是dfs序,所以肯定在一个连续区间上,可以用rmq求解

G:迭代深搜加剪枝,剪枝点为,如果当前可以染的颜色数加步数超过迭代的步数,直接就不行,然后状态用1表示染过的点,2表示可以染的点,然后每次染色,如果一个颜色没有可以染的点,就不往下搜

H:推理+剪枝,首先先把不行的情况简单判断一下,然后要先推出,最多选2个人跑,然后剪枝在于,如果一个人si > sj , ti > tj,这样的话,i这个点就可以忽略了,点处理完后暴力找两个人去计算即可

代码:

A:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 15;

int n, sx, sy, vis[N][N], g[N][N];
char c[N][2];
int x[N], y[N];

const int d1[4][2] = {0, 1, 1, 0, -1, 0, 0, -1};
const int d2[8][2] = {1, 2, -1, 2, 2, -1, 2, 1, -2, 1, -2, -1, 1, -2, -1, -2};

bool judge2(int sx, int sy) {
    for (int i = 0; i < n; i++) {
        if (c[i][0] == 'G') {
            for (int j = x[i] - 1; j >= 1; j--) {
                if (g[j][y[i]]) break;
                if (j == sx && y[i] == sy) return true;
            }
        }
        if (c[i][0] == 'R') {
            for (int k = 0; k < 4; k++) {
                int xx = x[i] + d1[k][0], yy = y[i] + d1[k][1];
                while (xx >= 1 && xx <= 10 && yy >= 1 && yy <= 9 && g[xx][yy] == 0) {
                    if (xx == sx && yy == sy) return true;
                    xx += d1[k][0];
                    yy += d1[k][1];
                }
            }
        }
        if (c[i][0] == 'C') {
            for (int k = 0; k < 4; k++) {
                int xx = x[i] + d1[k][0], yy = y[i] + d1[k][1];
                while (xx >= 1 && xx <= 10 && yy >= 1 && yy <= 9 && g[xx][yy] == 0) {
                    xx += d1[k][0];
                    yy += d1[k][1];
                }
                xx += d1[k][0]; yy += d1[k][1];
                while (xx >= 1 && xx <= 10 && yy >= 1 && yy <= 9 && g[xx][yy] == 0) {
                    if (xx == sx && yy == sy) return true;
                    xx += d1[k][0];
                    yy += d1[k][1];
                }
            }
        }
        if (c[i][0] == 'H') {
            for (int k = 0; k < 8; k++) {
                int xx = x[i], yy = y[i];
                int xxx = xx + d1[k / 2][0], yyy = yy + d1[k / 2][1];
                if (xxx >= 1 && xxx <= 10 && yyy >= 1 && yyy <= 9 && g[xxx][yyy]) continue;
                xxx = xx + d2[k][0], yyy = yy + d2[k][1];
                if (xxx >= 1 && xxx <= 10 && yyy >= 1 && yyy <= 9 && sx == xxx && sy == yyy) return true;
            }
        }
    }
    return false;
}

bool judge() {
    for (int i = 0; i < 4; i++) {
        int xx = sx + d1[i][0];
        int yy = sy + d1[i][1];
        if (xx < 1 || xx > 3 || yy < 4 || yy > 6) continue;
        int tmp = g[xx][yy];
        g[xx][yy] = 0;
        if (!judge2(xx, yy)) return false;
        g[xx][yy] = tmp;
    }
    return true;
}

int main() {
    while (~scanf("%d%d%d", &n, &sx, &sy) && n || sx || sy) {
        memset(vis, 0, sizeof(vis));
        memset(g, 0, sizeof(g));
        for (int i = 0; i < n; i++) {
            scanf("%s", c[i]);
            scanf("%d%d", &x[i], &y[i]);
            g[x[i]][y[i]] = 1;
        }
        printf("%s\n", judge() ? "YES" : "NO");
    }
    return 0;
}

B:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <map>
using namespace std;

typedef long long ll;
const int N = 2505;
const int M = 100005;

int n, m;
int h[N], num[N], r[M], t, s;
char month1[13][4] = {"", "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
int month[13] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
map<string, int> month2;

int judge(int x) {
    if (x % 4 == 0 && x % 100 != 0) return 1;
    if (x % 400 == 0) return 1;
    return 0;
}

int read() {
    char A[5];
    int a, b, c, d;
    scanf("%s%d%d%d", A, &b, &c, &d);
    a = month2[A];
    int day = b - 1;
    for (int i = 2000; i < c; i++) day += 365 + judge(i);
    for (int i = 1; i < a; i++) {
        day += month[i];
        if (i == 2 && judge(c)) day++;
    }
    return day * 24 + d;
}

int rmin[M][20], rmi[M];

void rmqinit(int *A, int n) {
    rmi[0] = -1;
    for (int i = 1; i <= n; i++) {
        rmi[i] = ((i&(i - 1)) == 0) ? rmi[i - 1] + 1 : rmi[i - 1];
        rmin[i][0] = A[i];
    }
    for (int j = 1; j <= rmi[n]; j++) {
        for (int i = 1; i + (1<<j) - 1 <= n; i++) {
            rmin[i][j] = min(rmin[i][j - 1], rmin[i + (1<<(j - 1))][j - 1]);
        }
    }
}

int rmqmin(int l, int r) {
    int k = rmi[r - l + 1];
    return min(rmin[l][k], rmin[r - (1<<k) + 1][k]);
}


int main() {
    for (int i = 1; i <= 12; i++) month2[month1[i]] = i;
    while (~scanf("%d%d", &n, &m) && n || m) {
        for (int i = 0; i < n; i++) {
            h[i] = read() + 1;
            scanf("%d", &num[i]);
        }
        scanf("%d%d", &t, &s);
        for (int i = 1; i <= m; i++) {
            scanf("%d", &r[i]);
            r[i] += (m - i) * s;
        }
        rmqinit(r, m);
        ll ans = 0;
        for (int i = 0; i < n; i++) {
            int tmp = rmqmin(max(1, h[i] - t), min(m, h[i]));
            ans += (ll)num[i] * (tmp - (m - h[i]) * s);
        }
        printf("%I64d\n", ans);
    }
    return 0;
}

C:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;

const int N = 50005;
int n, m;

struct Edge {
    int v, w;
    Edge() {}
    Edge(int v, int w) {
        this->v = v;
        this->w = w;
    }
} edge[N * 2];

int head[N], nxt[N * 2], en;

void addedge(int u, int v, int w) {
    edge[en] = Edge(v, w);
    nxt[en] = head[u];
    head[u] = en++;
}

int d[N];
queue<int> Q;

int get(int s) {
    Q.push(s);
    memset(d, -1, sizeof(d));
    d[s] = 0;
    int ans = s;
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        if (d[u] > d[ans]) ans = u;
        for (int i = head[u]; i + 1; i = nxt[i]) {
            int v = edge[i].v;
            int w = edge[i].w;
            if (d[v] != -1) continue;
            d[v] = d[u] + w;
            Q.push(v);
        }
    }
    return ans;
}

int dp[N];

void gao(int s) {
    Q.push(s);
    memset(d, -1, sizeof(d));
    d[s] = 0;
    while (!Q.empty()) {
        int u = Q.front(); Q.pop();
        dp[u] = max(dp[u], d[u]);
        for (int i = head[u]; i + 1; i = nxt[i]) {
            int v = edge[i].v;
            int w = edge[i].w;
            if (d[v] != -1) continue;
            d[v] = d[u] + w;
            Q.push(v);
        }
    }
}

inline void scanf_(int &num)//ÎÞ¸ºÊý
{
    char in;
    while((in=getchar()) > '9' || in<'0') ;
    num=in-'0';
    while(in=getchar(),in>='0'&&in<='9')
        num*=10,num+=in-'0';
}

int rmax[N][20], rmin[N][20], rmi[N];

void rmqinit(int *A, int n) {
    rmi[0] = -1;
    for (int i = 1; i <= n; i++) {
        rmi[i] = ((i&(i - 1)) == 0) ? rmi[i - 1] + 1 : rmi[i - 1];
        rmax[i][0] = A[i];
        rmin[i][0] = A[i];
    }
    for (int j = 1; j <= rmi[n]; j++) {
        for (int i = 1; i + (1<<j) - 1 <= n; i++) {
            rmax[i][j] = max(rmax[i][j - 1], rmax[i + (1<<(j - 1))][j - 1]);
            rmin[i][j] = min(rmin[i][j - 1], rmin[i + (1<<(j - 1))][j - 1]);
        }
    }
}

int rmqmax(int l, int r) {
    int k = rmi[r - l + 1];
    return max(rmax[l][k], rmax[r - (1<<k) + 1][k]);
}

int rmqmin(int l, int r) {
    int k = rmi[r - l + 1];
    return min(rmin[l][k], rmin[r - (1<<k) + 1][k]);
}

int main() {
    while (~scanf("%d%d", &n, &m) && n || m) {
        en = 0;
        memset(head, -1, sizeof(head));
        int x, y, z;
        for (int i = 0; i < n - 1; i++) {
            scanf_(x); scanf_(y); scanf_(z);
            addedge(x, y, z);
            addedge(y, x, z);
        }
        int s = get(1);
        int e = get(s);
        memset(dp, 0, sizeof(dp));
        gao(s);
        gao(e);
        rmqinit(dp, n);
        int q;
        while (m--) {
            scanf("%d", &q);
            int l = 1;
            int ans = 0;
            for (int r = 1; r <= n; r++) {
                while (l <= r && rmqmax(l, r) - rmqmin(l, r) > q) l++;
                ans = max(ans, r - l + 1);
            }
            printf("%d\n", ans);
        }
    }
    return 0;
}

E:

#include <cstdio>
#include <cstring>
#include <stack>
#include <algorithm>
using namespace std;

const int N = 600006;
const int M = 7005;

int t, n, m, num[N], v[N];

#define lson(x) ((x<<1)+1)
#define rson(x) ((x<<1)+2)

int node[N * 4];

inline void pushup(int x) {
    node[x] = min(node[lson(x)], node[rson(x)]);
}

void build(int l, int r, int x = 0) {
    if (l == r) {
        node[x] = v[l];
        return;
    }
    int mid = (l + r) / 2;
    build(l, mid, lson(x));
    build(mid + 1, r, rson(x));
    pushup(x);
}

int query(int l, int r, int L, int R, int x = 0) {
    if (L >= l && R <= r) return node[x];
    int mid = (L + R) / 2;
    int ans = n + 1;
    if (l <= mid) ans = min(ans, query(l, r, L, mid, lson(x)));
    if (r > mid) ans = min(ans, query(l, r, mid + 1, R, rson(x)));
    return ans;
}

int jump[M];
char str[M];

void getjump(char *str, int n) {
    jump[1] = 0;
    int j = 0;
    for (int i = 2; i <= n; i++) {
        while (j && str[i] != str[j + 1]) j = jump[j];
        if (str[i] == str[j + 1]) j++;
        jump[i] = j;
    }
}

int kmp(char *A, int n, char *B, int m) {
    int j = 0;
    int ans = 0;
    for (int i = 1; i <= n; i++) {
        while (j && A[i] != B[j + 1]) j = jump[j];
        if (A[i] == B[j + 1]) j++;
        if (j == m) {
            ans++;
            j = jump[j];
        }
    }
    return ans;
}

struct State {
    int l, r, tp;
    State() {}
    State(int l, int r, int tp) {
        this->l = l;
        this->r = r;
        this->tp = tp;
    }
} st[N];

int now, ans;

void dfs(int sl, int sr) {
    now = 0; ans = 0;
    int top = 0;
    st[++top] = State(sl, sr, 0);
    while (top) {
        int l = st[top].l, r = st[top].r, tp = st[top].tp;
        int tmp = num[query(l, r, 1, n)];
        while (now && tmp % 2 + '0' != str[now + 1]) now = jump[now];
        if (tmp % 2 + '0' == str[now + 1]) now++;
        if (now == m) {
            ans++;
            now = jump[now];
        }
        if (tp == 0) {
            if (l <= tmp - 1) {
                st[top].tp = 1;
                st[++top] = State(l, tmp - 1, 0);
            } else {
                if (tmp + 1 <= r) {
                    st[top].tp = 2;
                    st[++top] = State(tmp + 1, r, 0);
                } else top--;
            }
        } else if (tp == 1) {
            if (tmp + 1 <= r) {
                st[top].tp = 2;
                st[++top] = State(tmp + 1, r, 0);
            } else top--;
        } else top--;
    }
}

inline void scanf_(int &num)//ÎÞ¸ºÊý
{
    char in;
    while((in=getchar()) > '9' || in<'0') ;
    num=in-'0';
    while(in=getchar(),in>='0'&&in<='9')
        num*=10,num+=in-'0';
}

int main() {
    int cas = 0;
    scanf("%d", &t);
    while (t--) {
        scanf("%d", &n);
        for (int i = 1; i <= n; i++) {
            scanf_(num[i]);
            v[num[i]] = i;
        }
        scanf("%s", str + 1);
        m = strlen(str + 1);
        getjump(str, m);
        build(1, n);
        dfs(1, n);
        printf("Case #%d: %d\n", ++cas, ans);
    }
    return 0;
}

F:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;

const int N = 3005;
const int INF = 0x3f3f3f3f;

int n, m, g[N][N], g2[N][N];

struct Edge {
    int u, v;
    Edge() {}
    Edge(int u, int v) {
        this->u = u;
        this->v = v;
    }
} edge[N];

int d[N], fa[N];
bool vis[N];
bool isprim[N][N];
int val[N][N];

vector<int> G[N];

int prim() {
    memset(isprim, false, sizeof(isprim));
    memset(vis, false, sizeof(vis));
    vis[1] = true;
    int ans = 0;
    for (int i = 1; i <= n; i++) {
        d[i] = g[1][i];
        fa[i] = 1;
        G[i].clear();
    }
    for (int i = 1; i <= n - 1; i++) {
        int Min = INF, pos;
        for (int j = 1; j <= n; j++) {
            if (!vis[j] && d[j] < Min) {
                Min = d[j];
                pos = j;
            }
        }
        if (Min == INF) return INF;
        ans += Min;
        vis[pos] = true;
        edge[i] = Edge(fa[pos], pos);
        G[pos].push_back(fa[pos]);
        G[fa[pos]].push_back(pos);
        isprim[pos][fa[pos]] = isprim[fa[pos]][pos] = true;
        for (int j = 1; j <= n; j++) {
            if (!vis[j] && g[pos][j] < d[j]) {
                d[j] = g[pos][j];
                fa[j] = pos;
            }
        }
    }
    return ans;
}

int left[N], right[N], idx;

void dfs(int u, int fa) {
    left[u] = ++idx;
    for (int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if (v == fa) continue;
        dfs(v, u);
    }
    right[u] = idx;
}

int rmin[N][20], rmi[N];

void rmqinit(int *A, int n) {
    rmi[0] = -1;
    for (int i = 1; i <= n; i++) {
        rmi[i] = ((i&(i - 1)) == 0) ? rmi[i - 1] + 1 : rmi[i - 1];
        rmin[i][0] = A[i];
    }
    for (int j = 1; j <= rmi[n]; j++)
        for (int i = 1; i + (1<<j) - 1 <= n; i++)
            rmin[i][j] = min(rmin[i][j - 1], rmin[i + (1<<(j - 1))][j - 1]);
}

int rmqmin(int l, int r) {
    if (l > r) return INF;
    int k = rmi[r - l + 1];
    return min(rmin[l][k], rmin[r - (1<<k) + 1][k]);
}

void scanf_(int &num) {
    char in;
    bool neg = false;
    while(((in = getchar()) > '9' || in < '0') && in != '-');
    if(in == '-') {
        neg = true;
        while((in = getchar()) >'9' || in < '0');
    }
    num = in - '0';
    while(in = getchar(), in >= '0' && in <= '9')
        num *= 10, num += in -'0';
    if(neg)
        num = 0 - num;
}

int main() {
    while (~scanf("%d%d", &n, &m) && n || m) {
        int u, v, w;
        for (int i = 1; i <= n; i++)
            for (int j = i + 1; j <= n; j++) {
                g[i][j] = g[j][i] = INF;
                val[i][j] = val[j][i] = INF;
            }
        for (int i = 1; i <= m; i++) {
            scanf_(u); scanf_(v); scanf_(w);
            u++; v++;
            g[u][v] = g[v][u] = w;
        }
        int tmp = prim();
        idx = 0;
        dfs(1, 0);
        for (int i = 1; i <= n - 1; i++)
            if (left[edge[i].u] < left[edge[i].v]) swap(edge[i].u, edge[i].v);
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++) {
                g2[left[i]][left[j]] = g2[left[j]][left[i]] = g[i][j];
            }
        }
        for (int i = 1; i <= n; i++) {
            rmqinit(g2[i], n);
            for (int j = 1; j <= n - 1; j++) {
                int u = edge[j].u, v = edge[j].v;
                if (left[u] < i && i <= right[u]) {
                    val[u][v] = val[v][u] = min(val[u][v], min(rmqmin(1, left[u] - 1), rmqmin(right[u] + 1, n)));
                } else if (left[u] == i) {
                    if (left[v] >= 1 && left[v] <= left[u] - 1) {
                        val[u][v] = val[v][u] = min(val[u][v], min(rmqmin(1, left[v] - 1), rmqmin(left[v] + 1, left[u] - 1)));
                        val[u][v] = val[v][u] = min(val[u][v], rmqmin(right[u] + 1, n));
                    }
                    if (left[v] >= right[u] + 1 && left[v] <= n) {
                        val[u][v] = val[v][u] = min(val[u][v], rmqmin(1, left[u] - 1));
                        val[u][v] = val[v][u] = min(val[u][v], min(rmqmin(right[u] + 1, left[v] - 1), rmqmin(left[v] + 1, n)));
                    }
                }
            }
        }
        int q;
        scanf("%d", &q);
        double sum = 0;
        for (int i = 0; i < q; i++) {
            scanf("%d%d%d", &u, &v, &w);
            u++; v++;
            if (isprim[u][v] == 0) sum += tmp * 1.0;
            else sum += (tmp - g[u][v] + min(val[u][v], w)) * 1.0;
        }
        printf("%.4f\n", sum / q);
    }
    return 0;
}

G:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 10;

int n, g[N][N], vis[N][N], d;

int bitcount(int x) {
    return x == 0 ? 0 : bitcount(x>>1) + (x&1);
}

int f() {
    int col = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (vis[i][j] == 1) continue;
            col |= (1<<g[i][j]);
        }
    }
    return bitcount(col);
}

int D[4][2] = {0, 1, 0, -1, 1, 0, -1, 0};

void fuck(int x, int y, int col) {
    vis[x][y] = 1;
    for (int i = 0; i < 4; i++) {
        int xx = x + D[i][0];
        int yy = y + D[i][1];
        if (xx < 0 || xx >= n || yy < 0 || yy >= n || vis[xx][yy] == 1) continue;
        vis[xx][yy] = 2;
        if (g[xx][yy] == col) fuck(xx, yy, col);
    }
}

int gao(int col) {
    int cnt = 0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            if (g[i][j] != col) continue;
            if (vis[i][j] == 2) {
                fuck(i, j, col);
                cnt++;
            }
        }
    }
    return cnt;
}

bool dfs(int h) {
    if (h == d) return f() == 0;
    if (h + f() > d) return false;
    int tmp[N][N];
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            tmp[i][j] = vis[i][j];
    for (int i = 0; i <= 5; i++) {
        if (gao(i) == 0) continue;
        if (dfs(h + 1)) return true;
        for (int j = 0; j < n; j++)
            for (int k = 0; k < n; k++)
                vis[j][k] = tmp[j][k];
    }
    return false;
}

int main() {
    while (~scanf("%d", &n) && n) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                scanf("%d", &g[i][j]);
                vis[i][j] = 0;
            }
        }
        d = 0;
        fuck(0, 0, g[0][0]);
        while (true) {
            if (dfs(0)) break;
            d++;
        }
        printf("%d\n", d);
    }
    return 0;
}

H:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int N = 10005;

typedef long long ll;

void scanf_(int &num)
{
    char in;
    bool neg=false;
    while(((in=getchar()) > '9' || in<'0') && in!='-') ;
    if(in=='-')
    {
        neg=true;
        while((in=getchar()) >'9' || in<'0');
    }
    num=in-'0';
    while(in=getchar(),in>='0'&&in<='9')
        num*=10,num+=in-'0';
    if(neg)
        num=0-num;
}

void scanf_ll(ll &num)
{
    char in;
    bool neg=false;
    while(((in=getchar()) > '9' || in<'0') && in!='-') ;
    if(in=='-')
    {
        neg=true;
        while((in=getchar()) >'9' || in<'0');
    }
    num=in-'0';
    while(in=getchar(),in>='0'&&in<='9')
        num*=10,num+=in-'0';
    if(neg)
        num=0-num;
}

struct Mem {
    ll s, t;
    void read() {
        scanf_ll(s);
        scanf_ll(t);
    }
} mem[N];

bool cmp(Mem a, Mem b) {
    if (a.t != b.t) return a.t < b.t;
    return a.s < b.s;
}

int t, n;
ll d, l, w;

bool judge() {
    l -= d * n;
    if (l < 0) return false;
    for (int i = 0; i < n; i++) w -= mem[i].s * d;
    if (w < 0) return false;
    for (int i = 0; i < n; i++) if (mem[i].s * l <= w) return true;
    return false;
}

double cal(Mem a, Mem b) {
    if (a.t > b.t) swap(a, b);
    if (a.s * l <= w) return a.t * l;
    if (b.s * l > w) return 1e20;
    double x = (w - b.s * l) * 1.0 / (a.s - b.s);
    return a.t * x * 1.0 + b.t * 1.0 * (l * 1.0 - x);
}

int main() {
    scanf("%d", &t);
    while (t--) {
        scanf_(n); scanf_ll(d);
        scanf_ll(l); scanf_ll(w);
        for (int i = 0; i < n; i++) mem[i].read();
        if (!judge())
            printf("No solution\n");
        else {
            double ans = 1e20;
            sort(mem, mem + n, cmp);
            int sn = 0;
            ll r = 100005;
            double tmp = 0;
            for (int i = 0; i < n; i++) {
                tmp += mem[i].t * d * 1.0;
                if (mem[i].s * l <= w) ans = min(ans, mem[i].t * l * 1.0);
                if (mem[i].s >= r) continue;
                r = min(mem[i].s, r);
                mem[sn++] = mem[i];
            }
            for (int i = 0; i < sn; i++) {
                for (int j = i + 1; j < sn; j++) {
                    ans = min(ans, cal(mem[i], mem[j]));
                }
            }
            printf("%.2f\n", ans + tmp);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值