精选GenAI和LLM学习资源

1、概念介绍

a) Andrej Karpathy-大型语言模型简介: Intro to Large Language Models

  • 该视频对 LLMs 进行了一般性和高级的介绍,涵盖推理、缩放、微调、安全问题和提示注入等主题。

b) 英伟达-生成式AI解释: Generative AI explained

  • 该视频对 GenAI、其用途、公司的目标应用程序等进行了高度概述。

2、涵盖基本用法的课程

a) 微软-向初学者的生成式人工智能:Generative AI for Beginners

  • 这是一门优秀的课程,涉及LLMs、提示、RAG、代理、多模式等。

b) 谷歌-云技能提升: Cloud Skills Boost

3、Prompt工程

a) 微软-提示工程简介:Introduction to prompt engineering

b) OpenAI-Prompt工程指南: Prompt engineering guide

c) Anthropic Claude-Prompt工程指南:Prompt engineering guide
 

4、LLMs

a) Andrej Karpathy- GPT的状态:State of GPT

  • 涵盖从标记化到预训练、监督微调和人类反馈强化学习 (RLHF) 等内容。此外,还涵盖了有效使用这些模型的实用技巧和心理模型,包括提示策略、微调等。

b) 视觉介绍: LLMs by Bycroft

  • 理解可视化有点复杂,但浏览一下也可以在某种程度上有所帮助。

5、深入探讨新一代人工智能/机器学习

a) 吴恩达-机器学习简介:Machine Learning Introduction 

  • 深入了解 ML 的权威课程。

b) Fast.ai: Course

c) Andrej Karpathy:Zero to Hero

  • 这是一个将从头开始构建 GPT 的 YouTube 系列。

d) 3Blue1Browns: Season 3 - Neural networks

e) 谷歌-为高级开发人员提供的云技能提升: Cloud Skills Boost for Advanced Devs
 

6、其他

a) 斯坦福人工智能课程:Stanford AI Courses

b)英伟达深度学习研究所: Nvidias deep learning institute

c) Awesome-generative-ai 上的工具和更广泛的资源列表: awesome-generative-ai
 

学习路径推荐

对于对文本或代码生成特别感兴趣的人,建议了解以下关键领域的顺序:

  1. 文本完成/推理:Text Completion/Inference
  2. 提示工程:Prompt Engineering
  3. 工具/函数调用:Tools/Function Calling
  4. 检索增强生成:RAG
  5. 人工智能代理:AI Agents
  6. 微调:Fine Tuning


Ref:Great Resources for Learning Generative AI and Large Language Models (LLMs) - Scramblings

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老A的AI实验室

给博主点一杯卡布奇诺

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值