动态规划之剪绳子(整数拆分)

剑指 Offer 14- II. 剪绳子 II

题目描述

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

示例 1:

输入: 2      输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10      输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
  • 提示:2 <= n <= 1000

解法:动态规划整数拆分

在14-1的基础上,使用BigInt完成大数计算。因为Math.max不能求BigInt类型的最值,所以我们要自己写一个max函数判断最值。

var cuttingRope = function(n) {
  const dp = new Array(n+1).fill(BigInt(1))
  for(let i = 2; i <= n; i++){
    for(let j = 2; j < i; j++){
      dp[i] = max(dp[i], BigInt(j) * BigInt(i-j), BigInt(j) * dp[i-j]) 
    }
  }
  return dp[n] % 1000000007n
};
const max = (...arg) => arg.reduce((pre, cur) => pre > cur ? pre : cur)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值