剑指 Offer 14- II. 剪绳子 II
题目描述
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2 输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10 输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
- 提示:2 <= n <= 1000
解法:动态规划整数拆分
在14-1的基础上,使用BigInt完成大数计算。因为Math.max不能求BigInt类型的最值,所以我们要自己写一个max函数判断最值。
var cuttingRope = function(n) {
const dp = new Array(n+1).fill(BigInt(1))
for(let i = 2; i <= n; i++){
for(let j = 2; j < i; j++){
dp[i] = max(dp[i], BigInt(j) * BigInt(i-j), BigInt(j) * dp[i-j])
}
}
return dp[n] % 1000000007n
};
const max = (...arg) => arg.reduce((pre, cur) => pre > cur ? pre : cur)