自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

转载 Vue + Springboot 前后端分离项目实践:项目简介及教程

专栏目录(持续更新)Vue.js + Spring Boot 前后端分离项目实践(一):项目简介Vue.js + Spring Boot 前后端分离项目实践(二):搭建 Vue.js 项目Vue.js + Spring Boot 前后端分离项目实践(三):前后端结合测试(登录页面开发)Vue.js + Spring Boot 前后端分离项目实践(四):数据库的引入Vue.js ...

2019-04-29 09:31:00 264

转载 Keras.model.save() 引发 NotImplementedError 如何解决

在「机器学习入坑指南(九):TensorFlow 实战——手写数字识别(MNIST 数据集)」一文中,我们实现了一个模型,完整的代码如下(原文有详细解析):import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data()...

2018-09-29 21:24:00 240

转载 机器学习入坑指南(九):TensorFlow 实战——手写数字识别(MNIST 数据集)

上篇文章简要介绍了「深度学习」,接下来,我们将从最经典的例子入手进行实战。一、背景知识简介1 TensorFlowTensor:张量(即多维数组),Flow:(数据)流TensorFlow,是一个使用数据流图(data flow graohs)技术来进行科学计算的开源软件库,它由Google Brain 团队开发,被广泛应用于各种感知和语言理解任务的机器学习。点击访问:Tens...

2018-09-29 20:57:00 134

转载 机器学习入坑指南(八):深度学习简介

深度学习(deep learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。Oh,到底是个什么鬼?一、什么是深度学习?1 为什么叫“深度学习”最初的深度学习主要是指人工神经网络。人工神经网络(下文简称“神经网络”)起源于生物学,但在发展的过程中逐渐摆脱了生物学的气质,而更加偏重统计学、信号学等内容,从而在实践应...

2018-09-26 21:26:00 39

转载 机器学习入坑指南(七):机器学习的知识结构

互联网的浪潮席卷全球,它功成名遂,高处不胜寒,一览众山小。然而时代的弄潮儿不会止步于此,他们还要站在新的浪潮之巅,去征服更大的世界。一、前言:为何要学习机器学习我不知道下一个风口到底是什么,但我相信人工智能、虚拟现实、区块链,至少有一种将重塑我们的未来。经过数十年的发展,机器学习被认为是人工智能中最成熟、应用最广泛、成果最令人振奋的一环。人们对人工智能的遐想通常是拥有独立思维的...

2018-09-26 21:25:00 1

转载 机器学习入坑指南(六):K 近邻算法

一、算法简介K 近邻 (KNN,K Nearest Neighbours) 是一种分类算法。算法的思想为:要判断一个东西属于哪一类,看看跟它特征最近似的 K 个东西都属于什么,如果这 K 个东西属于 A 类的最多,那我们就认为未知的那个东西也是 A 类的。举个栗子,小明拿到一个水果,皮是黄色的,可以剥开,甜甜的软软的,这时候麻麻买回来了一串香蕉一袋橘子,小明发现香蕉跟你拿的这个东西...

2018-09-26 21:24:00 51

转载 机器学习入坑指南(五):逻辑回归

一、逻辑回归简介逻辑回归用于解决“二分类”问题,比如判断明天是晴是雨,判断一封邮件是否是垃圾邮件,判断肿瘤是否是恶性的等等。让我们举个例子来说明为什么这类问题适合用逻辑回归而不是线性回归来解决。假如我们想用肿瘤的大小判断它是否为恶性,根据样本,得到如下的线性回归模型:看起来这条线拟合地并不是很令人满意,但似乎还是能够解决问题的,我们把输出的中值作为阈值,就可以得到正确的分类结果...

2018-09-26 21:22:00 53

转载 机器学习入坑指南(四):多元线性回归

在学习了「简单线性回归」之后,我们进一步学习应用更为广泛的多元线性回归,并使用 Python 代码来实现它。一、理解原理多元线性回归是对简单线性回归的推广,同时有着不同于简单线性回归的特性。1 概念多元线性回归(Multiple Linear Regression)尝试通过已知数据找到一个线性方程来描述两个及以上的特征(自变量)与输出(因变量)之间的关系,并用这个线性方程来预测结...

2018-09-26 21:20:00 62

转载 机器学习入坑指南(三):简单线性回归

学习了「数据预处理」之后,让我们一起来实现第一个预测模型——简单线性回归模型。一、理解原理简单线性回归是我们接触最早,最常见的统计学分析模型之一。假定自变量 $x$与因变量 $y$ 线性相关,我们可以根据一系列已知的 $(x,y)$ 数据,通过某种方法,拟合出一条直线 $ y = b_0 + b_1x$,并利用这条直线预测 $y$ 的值 。这种方法就叫作简单线性回归。那么我们该如...

2018-09-26 21:19:00 3

转载 机器学习入坑指南(二):数据预处理

机器学习初步:数据预处理机器学习离不开大量的数据。在对这些数据进行分析前,我们先学习一下在 Python 中如何导入数据并对它进行预处理。1 导入需要的库利用 Python 进行数据分析所必须的库有两个。NumPy 包含了各种数学计算函数。Pandas 用于导入和管理数据集。通常我们使用以下形式导入这两个库:import numpy as npimport pandas ...

2018-09-26 21:18:00 101

转载 机器学习入坑指南(一):Python 环境搭建

前言——100-Days-Of-ML-Code一直有学习机器学习的计划,最近混进了某大佬创建的学习群(欢迎关注群主的公众号:「机器学习Club」),跟一群小伙伴一起跟着 GitHub 上一个小哥的 "100-Days-Of-ML-Code" 学习。虽然工作繁忙,学习压力也大,但是既然进来了就没有怂的道理。为了巩固自己学到的东西,也为了给和我一样零基础的同学们提供一点帮助,我决定在这里...

2018-09-26 21:16:00 4

转载 JavaEE 从入门到放弃(三):JSP 让世界更美好?

一、Servlet 与 JSPServlet 通常使用字符串拼接的方式动态生成 html,大量的 html 内容使代码难以维护、可读性差。于是大佬们想,既然能在 Java 中写 html,能不能在 html 中写 Java 呢?JSP(JavaServer Pages) 诞生了。JSP 是基于 Servlet API 的,所以拥有 Servlet 拥有的一系列好处,可以实现各种功能...

2018-09-26 21:14:00 67

转载 JavaEE 从入门到放弃(二):Servlet

一、Servlet 简介1 如何理解 ServletServlet = Server + Applet(Applet,小程序)Servlet是运行在 Web 服务器或应用服务器上的 Java "小"程序。使用 Servlet,可以收集来自网页表单的用户输入,呈现来自数据库或者其他源的记录,即与用户交互,还可以动态创建网页。也就是说,它几乎可以完成网站的所有功能。广义的 Ser...

2018-09-26 21:13:00 76

转载 JavaEE 从入门到放弃(一):Java EE 是个什么东西

为什么选择 Java想必有很多初学者会像我一样,不知选择什么语言入门。在尝试了 C、C++、C#、Python、PHP 后,我决定把 Java作 为第一门深入学习的编程语言。这个路着实有点长......不过放心,你可以大胆地选择 Java。如果说 C++ 是编程界的曹操,那 Java 就是司马懿,近三十年踏惊涛骇浪如履平地,熬死了无数对手。诞生之初,Java 饱受争议。而如今,那些...

2018-09-26 21:10:00 228

转载 JavaSE 实战:贪吃蛇游戏

前言学习 Java 已经一个月了,作为一个 GameBoy ,梦想之一就是能做出来自己的游戏,于是决定尝试编写贪吃蛇来作为阶段性总结。经过一天的奋(zhua)战(kuang),终于实现了基本的功能,晚餐愉快地给自己加了鸡腿~不过万里长城不是一天筑成的,自己的水平还非常有限,想做出合格的游戏还十分困难。这次把代码放出来其实还是蛮羞涩的,毕竟有各种问题,欢迎各路大神批评指正!不过,希望...

2018-09-26 21:06:00 26

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除