01背包问题(空间优化,路径打印)

本文探讨了经典的背包问题,通过动态规划算法寻找在给定背包容量下,如何选择物品以达到价值最大化。文章详细解释了状态转移方程,并通过一个具体示例展示了算法的实现过程。

 

//写在前面
//01问题:有N个物品,每个物品都有其对应的体积和价值
//有一个容量为V的背包问怎样放能使背包中物品的价值最大
//状态转移方程为:f[i][v]=max(f[i-1][v],f[i-1][v-a[i]+b[i]) 
//当使用空间优化是状态转移方程为:f[v]=max(f[v],f[v-a[i]]+b[i]) 
#include <iostream>
#include <string.h>
#define maxn 1000
using namespace std;
int N,V;//分别代表物品的数量和背包的容量 
int a[maxn];int b[maxn];//分别代表物品的体积和价值 
int ans[maxn];//dp数组
int path[maxn][maxn];//路径记录数组 
int main()
{
    cin>>N>>V;
    memset(path,0,sizeof(path));
    memset(ans,0,sizeof(ans));
    for(int i=1;i<=N;i++)cin>>a[i]>>b[i];
	
	for(int i=1;i<=N;i++)
	{
		for(int j=V;j>=0;j--)
		if(j>=a[i]&&(ans[j-a[i]]+b[i])>ans[j])
		{
		    ans[j]=(ans[j-a[i]]+b[i]);
		    path[i][j]=1;//将这个物品加入到路径中 
		}//状态转移方程 
	}
	
	for(int i=1;i<=V;i++)cout<<ans[i]<<' ';cout<<'\n';
	
	int p=V;
	for(int i=N;i>=0;i--)//路径输出 
	{
		if(p<0)break;
		if(path[i][p])
		{
			cout<<b[i]<<' ';
			p-=a[i];
		}
	}
} 
/*
5 10
2 6
2 3
6 5
5 4
4 6
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值