非线性系统反馈线性化
- 非线性系统相对阶
相对阶:对输出 y y y 求导 ρ \rho ρ 次后,建立起与控制输出 u u u 的联系,那么系统的相对阶为 ρ \rho ρ。
y ( ρ ) = q ( u ) y^{(\rho)}=q(u) y(ρ)=q(u) -
L
i
e
Lie
Lie 导数基本计算:
L f 0 h ( x ) = h ( x ) L f h ( x ) = ∂ h ∂ x f ( x ) = ( ∂ h ∂ x 1 , ∂ h ∂ x 2 , ⋯ , ∂ h ∂ x n ) ⋅ f ( x ) = ∑ i = 1 n ∂ h ∂ x i ⋅ f i ( x ) L f 2 h ( x ) = L f ( L f h ( x ) ) = ∂ ( L f h ( x ) ) ∂ x f ( x ) L g L f h ( x ) = L g ( L f h ( x ) ) = ∂ ( L f h ( x ) ) ∂ x g ( x ) L^0_fh(x)=h(x)\\L_fh(x)=\frac{\partial h}{\partial x}f(x)=\left(\frac{\partial h}{\partial x_1},\frac{\partial h}{\partial x_2},\cdots,\frac{\partial h}{\partial x_n}\right)\cdot f(x)=\sum^n_{i=1}\frac{\partial h}{\partial x_i}\cdot f_i(x)\\ L^2_fh(x)=L_f(L_fh(x))=\frac{\partial (L_fh(x))}{\partial x}f(x)\\ L_gL_fh(x)=L_g(L_fh(x))=\frac{\partial (L_fh(x))}{\partial x}g(x) Lf0h(x)=h(x)Lfh(x)=∂x∂hf(x)=(∂x1∂h,∂x2∂h,⋯,∂xn∂h)⋅f(x)=i=1∑n∂xi∂h⋅fi(x)Lf2h(x)=Lf(Lfh(x))=∂x∂(Lfh(x))f(x)LgLfh(x)=Lg(Lfh(x))=∂x∂(Lfh(x))g(x) - 非奇异矩阵:
a ( x ) = [ L g 1 L f ρ 1 − 1 h 1 ( x ) ⋯ L g m L f ρ 1 − 1 h 1 ( x ) ⋮ ⋱ ⋮ L g 1 L f ρ m − 1 h m ( x ) ⋯ L g 1 L f ρ m − 1 h m ( x ) ] b ( x ) = [ L f ρ 1 h 1 ( x ) ⋮ L f ρ m h m ( x ) ] a(x)=\begin{bmatrix} L_{g_1}L^{\rho_1-1}_fh_1(x)&\cdots &L_{g_m}L^{\rho_1-1}_fh_1(x)\\ \vdots &\ddots&\vdots\\ L_{g_1}L^{\rho_m-1}_fh_m(x) &\cdots&L_{g_1}L^{\rho_m-1}_fh_m(x) \\ \end{bmatrix}\\ b(x)=\begin{bmatrix} L^{\rho_1}_fh_1(x) \\ \vdots\\ L^{\rho_m}_fh_m(x) \end{bmatrix}\\ a(x)=⎣⎢⎡Lg1Lfρ1−1h1(x)⋮Lg1Lfρm−1hm(x)⋯⋱⋯LgmLfρ1−1h1(x)⋮Lg1Lfρm−1hm(x)⎦⎥⎤b(x)=⎣⎢⎡Lfρ1h1(x)⋮Lfρmhm(x)⎦⎥⎤ - 精确线性化应加为反馈规律:
u = 1 a ( x ) [ − b ( x ) + v ] u=\frac{1}{a(x)}[-b(x)+v] u=a(x)1[−b(x)+v] - 系统控制率:
v = a ( x ) u + b ( x ) v=a(x)u+b(x) v=a(x)u+b(x) - 线性系统的标准形式:
x ˙ = A x + B v y = C x \dot{x}=Ax+Bv\\ y=Cx x˙=Ax+Bvy=Cx
参考实例:https://zhuanlan.zhihu.com/p/432987620