谷歌公司最近发布了一款名为NeuralGCM的全新AI模型,该模型结合了机器学习和传统技术,用在天气预报上,NeuralGCM的特点在于其运行成本更低,且在预报未来1-10天天气方面的准确度更高,这一成果已发表在《Nature》期刊。
NeuralGCM模型是怎样进行天气预测的,和其它软件相比预测准确度又有什么不同呢?
它其实就相当于运用大脑神经元经过反复的训练再结合全球环流模型、物理密集型方法与人工智能驱动等相关方式来进行天气预测,再通过大量数据的生成和AI的不断预测来提高它的准确度。
就好比将一些分布四周的数据原理结合起来,形成一个巨大的网站,所有的信息都可以第一时间在这里进行更新和整合。和其它模型相比,在时间性和信息准确性上这款模型更为优秀。
1.预测准确性:NeuralGCM在1-15天的预报准确率能媲美欧洲中期天气预报中心(ECMWF)的预测结果,对于10天内的天气预报,这款模型在技术上比其它软件的正确率更高。
2.计算速度:NeuralGCM在速度上也是“遥遥领先”,可以在30秒计算时间内生成22.8天大气模拟,且计算成本比传统GCM低100000倍。
3.极端天气的预测,部分模型对于极端天气的预测精度还不够,而NeuralGCM不管是在台风轨迹和速度上还是对于预测结果的准确度上都相当智能化。
NeuralGCM的学习技能展现出了它的潜力,这在未来必定是场冲击和挑战,我们必须不断的学习最终才能紧跟AI的步伐。