1405D 1900
题意:给你一颗树,其中Alice在a点上,Bob在b点上,Alice一步能走的距离为da,Bob一步能走的距离为db,问Alice能否在有限的步数内追到Bob,Alice先走
思路:首先如果Bob在Alice第一步范围内,那么Alice第一步就追到了Bob,其次求这个树的直径,即这棵树最长的一条链,通过两次bfs或者dfs可以得到,先随便找一个点得到距离他最远的那一个点,然后再进行一次搜索就可以得到最长的一条链,如果2da>=树的直径,那么就意味着Alice肯定能追到Bob,当Alice在这条链的中点的时候,Alice能到达这棵树的任意一个点,之后是,如果da2>=db那么就意味着,Alice能把Bob逼到一个叶子节点,因为当Alice的下一步极限正好能达到Bob的话,Bob要么往Alice那边走要么就只能走向死胡同,如果往Alice那边走,da2>=db的话有正好能追到,反之就追不到,因为可以一直循环
综上得到的条件的先后顺序是:
如果第一步能直接追到,就直接输出
之后如果da2>=树的直径,也是Alice赢
如果da2>=db,也是Alice赢
之后da2<db,才是Bob赢
注意条件的先后顺序除了最后两个
具体代码如下:
#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
#define rep(i, a, n) for(int i = a; i <= n; i++)
#define per(i, a, n) for(int i = n; i >= a; i--)
#define IOS std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define fopen freopen("file.in","r",stdin);freopen("file.out","w",stdout);
#define fclose fclose(stdin);fclose(stdout);
const int inf = 1e9;
const ll onf = 1e18;
const int maxn = 1e5+10;
inline int read(){
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
std::vector<int> g[maxn];
int r, mx, vis[maxn];
void dfs(int u, int fa, int step){
for(auto v : g[u]){
if(v == fa) continue;
vis[v] = step+1;
dfs(v,u,step+1);
}
if(step>mx) mx = step, r = u;
}
inline void cf(){
int t = read();
while(t--){
int n=read(), a=read(), b=read(), da=read(), db=read();
rep(i,1,n) g[i].clear();
rep(i,1,n-1){
int x=read(), y=read();
g[x].push_back(y), g[y].push_back(x);
}
mx = 0;
dfs(a,0,0);
if(vis[b]<=da) {printf("Alice\n");continue;}
mx = 0;
dfs(r,0,0);
if(mx<=2*da) printf("Alice\n");
else if(2*da>=db) printf("Alice\n");
else printf("Bob\n");
}
return ;
}
signed main(){
cf();
return 0;
}