codeforces1405D. Tree Tag 树的直径+思维

21 篇文章 0 订阅
4 篇文章 0 订阅

1405D 1900
题意:给你一颗树,其中Alice在a点上,Bob在b点上,Alice一步能走的距离为da,Bob一步能走的距离为db,问Alice能否在有限的步数内追到Bob,Alice先走
思路:首先如果Bob在Alice第一步范围内,那么Alice第一步就追到了Bob,其次求这个树的直径,即这棵树最长的一条链,通过两次bfs或者dfs可以得到,先随便找一个点得到距离他最远的那一个点,然后再进行一次搜索就可以得到最长的一条链,如果2da>=树的直径,那么就意味着Alice肯定能追到Bob,当Alice在这条链的中点的时候,Alice能到达这棵树的任意一个点,之后是,如果da2>=db那么就意味着,Alice能把Bob逼到一个叶子节点,因为当Alice的下一步极限正好能达到Bob的话,Bob要么往Alice那边走要么就只能走向死胡同,如果往Alice那边走,da2>=db的话有正好能追到,反之就追不到,因为可以一直循环
综上得到的条件的先后顺序是:
如果第一步能直接追到,就直接输出
之后如果da
2>=树的直径,也是Alice赢
如果da2>=db,也是Alice赢
之后da
2<db,才是Bob赢
注意条件的先后顺序除了最后两个
具体代码如下:

#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<bits/stdc++.h> 
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
#define rep(i, a, n) for(int i = a; i <= n; i++)
#define per(i, a, n) for(int i = n; i >= a; i--)
#define IOS std::ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
#define fopen freopen("file.in","r",stdin);freopen("file.out","w",stdout);
#define fclose fclose(stdin);fclose(stdout);
const int inf = 1e9;
const ll onf = 1e18;
const int maxn = 1e5+10;
inline int read(){
	int x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
	return x*f;
}
std::vector<int> g[maxn];
int r, mx, vis[maxn];
void dfs(int u, int fa, int step){
	for(auto v : g[u]){
		if(v == fa) continue;
		vis[v] = step+1;
		dfs(v,u,step+1);
	}
	if(step>mx) mx = step, r = u;
}
inline void cf(){
	int t = read();
	while(t--){
		int n=read(), a=read(), b=read(), da=read(), db=read();
		rep(i,1,n) g[i].clear();
		rep(i,1,n-1){
			int x=read(), y=read();
			g[x].push_back(y), g[y].push_back(x);
		}
		mx = 0;
		dfs(a,0,0);
		if(vis[b]<=da) {printf("Alice\n");continue;}
		mx = 0;
		dfs(r,0,0);
		if(mx<=2*da) printf("Alice\n");
		else if(2*da>=db) printf("Alice\n");
		else printf("Bob\n");
	}
	return ;
}
signed main(){
	cf();
	return 0;
}	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值