欧几里德算法及扩展欧几里德

欧几里德算法 
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:

定理:gcd(a,b) = gcd(b,a mod b)

证明:a可以表示成a = kb + r,则r = a mod b 
假设d是a,b的一个公约数,则有 
d|a, d|b,而r = a - kb,因此d|r 
因此d是(b,a mod b)的公约数

假设d 是(b,a mod b)的公约数,则 
d | b , d |r ,但是a = kb +r 
因此d也是(a,b)的公约数

因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证

 

可以递归或者迭代写出程序

 

int gcd(int n,int m)
{
 int max,min;
 int r;
 n>m ? (max=n,min=m):(max=m,min=n);
 while(min)
 {
  r=max%min;
  max=min;
  min=r;
 }
 return max;
}

 

int gcd_(int n, int m)
{
 int max,min;
 n>m ? (max=n,min=m):(max=m,min=n);
 if(min==0)
  return max;
 return gcd_(min,max%min);
}

 

 

 

 

 

扩展欧几里德算法不但能计算(a,b)的最大公约数,而且能计算a模b及b模a的乘法逆元,扩展欧几里德算法是用来在已知a, b求解一组p,q使得p * a+q  * b = Gcd(a, b)  (解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。

 

 

把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
那么可以得到:
a'x + b'y = Gcd(a', b')  ===>
bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b)  ===>
ay +b(x - a / b*y) = Gcd(a, b)
因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)

 

 

 

扩展欧几里德解一般二元一次方程a * x + b * y = c

从上面的过程可以看到,ax + by = gcd(a ,b)一定有解,再看一般形式ax + by=c,只有当且仅当c是gcd(a, b)的整数倍时才有解,否则无解。因为如果我们两边同除gcd(a, b),会出现这样一种情况a'x + b'y=c / gcd(a, b),如果c不是gcd(a,b)的整数倍,那么左边是整数,右边是分数,显然无解。

      至此,到网上搜很多博客都会发现这句话“ ax+by=c的求解可以先求出ax  + by = gcd(a, b),然后将x y扩大c / gcd(a,b)倍就可以了“,【而我自己无法证明这句话的正确性,反而觉得这句话是错的,在前面已经得出ax
+ by = gcd(a, b)的解是:
      x = x0 + b / gcd(a, b) * k
      y = y0 - a / gcd(a, b) * k  (k为任意整数)
如果将x,y扩大c / gcd(a, b)倍后就成了
      x = x0 * c / gcd(a, b) + b * c * k / (gcd(a, b) ^ 2)
      y = y0 * c / gcd(a, b) - a * c * k / (gcd(a, b) ^ 2)(k为任意整数)
而我解出的通解是
      x = x0 * c / gcd(a, b) + b / gcd(a, b) * k
      y = y0 * c / gcd(a, b) - a / gcd(a, b) * k  (k为任意整数)
上面两组通解明显不等价,下面的一组通解包含了上面的一组通解,通过代入原方程ax + by = c验证,下面的一组通解才是正确的。】【前面这段可忽略】所以,在求通解的过程中,只需要在特解x0 y0上扩大c / gcd(a, b)倍就可以了。

/* Author: bcegkmqsw */ #include<stdio.h> #include<string.h> #include<stdlib.h> typedef __int64 LL; LL exgcd(LL a, LL b, LL &x, LL &y) { LL d, t; if(b == 0) { x = 1, y = 0; return a; } d = exgcd(b, a % b, x, y); t = x, x = y, y = t - (a / b) * x; return d; } int main() { LL x, y, m, n, L, d, t, a, b, c; while(scanf("%I64d%I64d%I64d%I64d%I64d", &x, &y, &m, &n, &L) != EOF) { a = m - n, b = L, c = y - x; if(a < 0) a = -a, c = -c; // a > 0 => d > 0 => b > 0 d = exgcd(a, b, x, y); if(m == n || c % d != 0) printf("Impossible\n"); else { c /= d, t = c * x; printf("%I64d\n", (t % b + b) % b); } } return 0; }

不定方程ax+by=c 现在终于到了本文重点解二元一次不定方程。看起来扩展Euclid算法是不定方程的一种特殊情况实际上呢不定方程却是用Euclid算法解的。 对于不定方程ax+by=c设gcd(a,b)=d如果ax+by=c有解则d|c这也是许多奥数题的切入点。所以一旦d不是c的约数那么 ax+by=c一定无解。当d|c时先求出ax’+by’=d=gcd(a,b)的x'和y'由于已经有ax’+by’=d要求ax’+by’=c将整个式子同乘c/d倍即可。则x=x'*c/dy=y'*c/d。由上一段可知
只要ax+by=c有一个解它就有无数个解。 Euclid算法还可以求解同余方程ax≡b(mod m)及其最小x。这其实和不定方程ax+my=b没有区别。不定方程和同余方程一般都有范围限制这其实也很容易解决就不说了扩展欧几里得解一般二元一次方程 最小的正整数解不定方程ax+by=c。

 

CCF大数据与计算智能大赛-面向电信行业存量用户的智能套餐个性化匹配模型联通赛-复赛第二名-【多分类,embedding】.zip项目工程资源经过严格测试可直接运行成功且功能正常的情况才上传,可轻松复刻,拿到资料包后可轻松复现出一样的项目,本人系统开发经验充足(全领域),有任何使用问题欢迎随时与我联系,我会及时为您解惑,提供帮助。 【资源内容】:包含完整源码+工程文件+说明(如有)等。答辩评审平均分达到96分,放心下载使用!可轻松复现,设计报告也可借鉴此项目,该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的。 【提供帮助】:有任何使用问题欢迎随时与我联系,我会及时解答解惑,提供帮助 【附带帮助】:若还需要相关开发工具、学习资料等,我会提供帮助,提供资料,鼓励学习进步 【项目价值】:可用在相关项目设计中,皆可应用在项目、毕业设计、课程设计、期末/期中/大作业、工程实训、大创等学科竞赛比赛、初期项目立项、学习/练手等方面,可借鉴此优质项目实现复刻,设计报告也可借鉴此项目,也可基于此项目来扩展开发出更多功能 下载后请首先打开README文件(如有),项目工程可直接复现复刻,如果基础还行,也可在此程序基础上进行修改,以实现其它功能。供开源学习/技术交流/学习参考,勿用于商业用途。质量优质,放心下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值