算法导论学习之快排+各种排序算法时间复杂度总结

本文详细介绍了快速排序算法,包括其分治思想、代码实现及时间复杂度分析。讨论了快排在不同划分情况下的时间复杂度,并与其他排序算法如合并排序、堆排序进行了对比,指出在实际应用中,快速排序因其平均时间复杂度为nlgn和较小的常数因子而通常表现最优。
摘要由CSDN通过智能技术生成

快排是一种最常用的排序算法,因为其平均的时间复杂度是nlgn,并且其中的常数因子比较小。

一.快速排序
快排和合并排序一样都是基于分治的排序算法;快排的分治如下:
分解:对区间A[p,r]进行分解,返回q,使得A[p–q-1]都不大于A[q] A[q+1,r]都大于A[q];
求解:对上面得到的区间继续递归进行快排
合并:因为快排是原地排序,所以不需要特别的合并
从上可以看出最重要的就是分解函数,其按关键值将数组划分成3部分,其具体实现的过程见代码注释。

我们一般取数组的最后一个元素作为划分比较的关键值,如下面的代码

int Paratition(int *a,int p,int r)
{ ///在循环时a[p--i]表示的是不大于key的元素
  ///a[i+1--j]表示的是当前大于key的元素
  ///划分的过程其实就是将每一个元素通过比较放到这两个区间去(主要是i的增长)。
  ///当然最后还要将a[i+1]和a[r]交换,使得a[i+1]表示划分元素
    int key=a[r]; ///取最后一个元素作为比较的关键值
    int i=p-1;
    for(int j=p;j<r;j++)
        if(a[j]<=key)
        {
            i++;
            swq(a[j],a[i]);
        }
    swq(a[i+1],a[r]);
    return i+
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值