【数据结构】哈希表

前言

在我们之前学习的数据结构中,在执行查找操作时总要进行或多或少的遍历操作,随着数据量的增加,查找所需的时间也会越来越多。而在实际运用中往往所需查找的数据量都非常庞大,如何在数以亿计的数据中快速找到所需数据呢?哈希表这一数据结构就会发挥至关重要的作用了。那么哈希表到底是啥,它是如何实现的,又该如何使用,本篇文章将会带你深入研究这些东西。

一、概念

        顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在 查找一个元素时,必须要经过关键 码的多次比较 顺序查找时间复杂度为 O(N) ,平衡树中为树的高度,即 O( log_2n ) ,搜索的效率取决于搜索过程中元素的比较次数。
        理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素 如果构造一种存储结构,通过某种函 (hashFunc) 使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快 找到该元素
当向该结构中:
插入元素
根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
搜索元素
对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功
该方式即为哈希 ( 散列 ) 方法, 哈希方法中使用的转换函数称为哈希 ( 散列 ) 函数,构造出来的结构称为哈希表 (Hash Table)( 或者称散列表 )
例如:数据集合 {1 7 6 4 5 9}
哈希函数设置为: hash(key) = key % capacity ; capacity 为存储元素底层空间总的大小
注意:
如果插入元素是35,由于35%10=5,hash(35)=5,这就会导致35的哈希值与5的哈希值一致了,这样不同元素共用一个哈希地址就被称为哈希冲突,要尽量避免

二、哈希冲突

对于两个数据元素的关键字 a和b ,有  a!=b  ,但有: Hash(a) == Hash(b) ,即: 不同关键字通过相同哈 希哈数计算出相同的哈希地址,该种现象称
哈希表是一种基于哈希函数进行快速查找的数据结构,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。哈希表的设计思路如下: 1. 哈希函数的设计:哈希函数是哈希表的核心,它将关键字映射到哈希表中的位置。一个好的哈希函数应该具有以下特点: - 映射范围广:哈希函数应该将关键字均匀地映射到哈希表中的位置,避免出现大量的哈希冲突。 - 计算速度快:哈希函数的计算速度应该尽可能快,以提高哈希表的访问速度。 - 低冲突率:哈希函数应该尽可能地避免哈希冲突,以提高哈希表的访问效率。 2. 哈希冲突的解决:由于哈希函数的映射范围是有限的,所以不同的关键字可能会映射到同一个位置,这就是哈希冲突。哈希冲突的解决方法有以下两种: - 地址法:将哈希表中的每个位置都连接一个表,当发生哈希冲突时,将新的关键字插入到表的末尾。 - 开放地址法:当发生哈希冲突时,通过某种算法找到哈希表中的下一个空位置,将新的关键字插入到该位置。 3. 哈希表的增删查改操作:哈希表的增删查改操作都需要先通过哈希函数找到关键字在哈希表中的位置,然后再进行相应的操作。具体操作如下: - 插入操作:将新的关键字插入到哈希表中的对应位置,如果发生哈希冲突,则按照地址法或开放地址法进行解决。 - 删除操作:将关键字从哈希表中对应位置删除,如果该位置上有表,则需要遍历表找到对应的关键字进行删除。 - 查找操作:通过哈希函数找到关键字在哈希表中的位置,如果该位置上有表,则需要遍历表找到对应的关键字进行查找。 - 修改操作:通过哈希函数找到关键字在哈希表中的位置,如果该位置上有表,则需要遍历表找到对应的关键字进行修改。 下面是一个使用地址法实现的哈希表Python代码示例: ```python class ListNode: def __init__(self, key=None, value=None): self.key = key self.value = value self.next = None class MyHashMap: def __init__(self): self.size = 1000 self.table = [None] * self.size def _hash(self, key): return key % self.size def put(self, key, value): index = self._hash(key) if not self.table[index]: self.table[index] = ListNode(key, value) else: node = self.table[index] while node: if node.key == key: node.value = value return if not node.next: break node = node.next node.next = ListNode(key, value) def get(self, key): index = self._hash(key) node = self.table[index] while node: if node.key == key: return node.value node = node.next return -1 def remove(self, key): index = self._hash(key) node = prev = self.table[index] if not node: return if node.key == key: self.table[index] = node.next else: node = node.next while node: if node.key == key: prev.next = node.next break node, prev = node.next, prev.next ```
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值