📚相关专栏:寻找one piece的刷题之路
什么是前缀和?
主要是通过预先计算数组或矩阵的前缀和,来快速查询子数组或子矩阵的和。这种算法可以用空间换时间,提高查询效率。
概念
给定一个数组 A,前缀和数组 PP 定义为:
P[i]=A[0]+A[1]+⋯+A[i]P[i]=A[0]+A[1]+⋯+A[i]
即 P[i]P[i] 是从数组开头到位置 ii 所有元素的和
计算前缀和
- 初始化:前缀和数组的第一个元素等于原数组的第一个元素,即 P[0]=A[0]。
- 迭代计算:对于每一个 i>0,计算 P[i]=P[i−1]+A[i]P[i]=P[i−1]+A[i]。
查询区间和
一旦前缀和数组构建完成,查询区间和的操作变得非常简单。如果要查询数组 AA 中从索引 ll 到索引 rr 的区间和,可以使用以下公式:
sum(l,r)=P[r]−P[l−1]sum(l,r)=P[r]−P[l−1]
注意,这里的 l−1 必须是非负的,因此查询的左端点 l 至少为 1(对于从 0 开始索引的数组,l 至少为 0)。
时间复杂度
- 预处理时间复杂度:构建前缀和数组的时间复杂度为 O(n),其中 n 是数组的长度。
- 查询时间复杂度:查询区间和的时间复杂度为 O(1),因为只需要一次简单的计算。
一、⼀维前缀和
题目描述: