题目:题目链接
题意:两人挪动棋子,每人可以选择一个权值为正的方向前进,并把该权值减小。当有人不能移动时,游戏结束;
分析:我们会发现:朝两个方向,只要某个方向的连续的非0个数为奇数,先手就有必胜策略。因为当先手路过一条路线时,把该路线权值降为0,后手只能向前走,如果后手又把该权值归零,那先手必胜。如果不归零,那么先手直接返回来,并把权值归零,那么后手就没有办法移动了,先手必胜。所以,在上述条件下,先手必胜。
#include <iostream>
#include <cstdio>
#include <string>
#include <string.h>
#include <map>
#include <vector>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cmath>
#include <queue>
#include <set>
#include <stack>
using namespace std;
int n, a[30];
int solve(int m)
{
int cnt = 0;
for(int i = m; cnt < n; i =(i+1)%n)
{
if(a[i]==0)
break;
else
cnt++;
}
if(cnt&1)
return 1;
cnt = 0;
for(int i = (m-1+n)%n; cnt < n; i = (i-1+n)%n)
{
if(a[i]==0)
break;
else
cnt++;
}
if(cnt&1)
return 1;
for(int i = -1; i <= 1; i+=2)
{
int k;
if(i==1)
k = m;
else
k = (m-1+n) % n;
for(int j = 1; j <= a[k]; ++j)
{
a[k] -= j;
if(!solve((m+i+n)%n))
{
a[k] += j;
return 1;
}
a[k] += j;
}
}
return 0;
}
int main()
{
int t;
scanf("%d", &t);
while(t--)
{
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%d", &a[i]);
if(solve(0))
puts("YES");
else
puts("NO");
}
return 0;
}
努力努力...