最近点对

在二维平面上的n个点中,如何快速的找出最近的一对点,就是最近点对问题。

    一种简单的想法是暴力枚举每两个点,记录最小距离,显然,时间复杂度为O(n^2)。

    在这里介绍一种时间复杂度为O(nlognlogn)的算法。其实,这里用到了分治的思想。将所给平面上n个点的集合S分成两个子集S1和S2,每个子集中约有n/2个点。然后在每个子集中递归地求最接近的点对。在这里,一个关键的问题是如何实现分治法中的合并步骤,即由S1和S2的最接近点对,如何求得原集合S中的最接近点对。如果这两个点分别在S1和S2中,问题就变得复杂了。

    为了使问题变得简单,首先考虑一维的情形。此时,S中的n个点退化为x轴上的n个实数x1,x2,...,xn。最接近点对即为这n个实数中相差最小的两个实数。显然可以先将点排好序,然后线性扫描就可以了。但我们为了便于推广到二维的情形,尝试用分治法解决这个问题。

    假设我们用m点将S分为S1和S2两个集合,这样一来,对于所有的p(S1中的点)和q(S2中的点),有p<q。

    递归地在S1和S2上找出其最接近点对{p1,p2}和{q1,q2},并设

d = min{ |p1-p2| , |q1-q2| }

    由此易知,S中最接近点对或者是{p1,p2},或者是{q1,q2},或者是某个{q3,p3},如下图所示。



 

    如果最接近点对是{q3,p3},即|p3-q3|<d,则p3和q3两者与m的距离都不超过d,且在区间(m-d,d]和(d,m+d]各有且仅有一个点。这样,就可以在线性时间内实现合并。

    此时,一维情形下的最近点对时间复杂度为O(nlogn)。

    在二维情形下,类似的,利用分治法,但是难点在于如何实现线性的合并?



 

    由上图可见,形成的宽为2d的带状区间,最多可能有n个点,合并时间最坏情况下为n^2,。但是,P1和P2中的点具有以下稀疏的性质,对于P1中的任意一点,P2中的点必定落在一个d X 2d的矩形中,且最多只需检查六个点(鸽巢原理)。

    这样,先将带状区间的点按y坐标排序,然后线性扫描,这样合并的时间复杂度为O(nlogn),几乎为线性了。

 

模版:

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int maxn = 1000000;

// 分治算法求最近点对
struct point//保存每一个点
{
    double x,y;
}p[maxn];

int a[maxn];//保存筛选的坐标点的索引即2min(dl,dh)区间的坐标点索引

int cmpx(point a,point b)//对n个点按横坐标由小到大排序
{
    return a.x<b.x;
}

int cmpy(int a,int b)//(这里用的是下标索引)对筛选的点按纵坐标由小到大排序
{
    return p[a].y<p[b].y;
}

inline double dis(point a,point b)//求点对间的距离
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}

double closest(int low,int high)//求最近点对
{
    int i,j,k;
    if(low+1==high)//只有两个点
        return dis(p[low],p[high]);
    if(low+2==high)//只有三个点
        return min(dis(p[low],p[high]),min(dis(p[low],p[low+1]),dis(p[low+1],p[high])));
    int mid=(low+high)>>1;//求中点即左右子集的分界线
    double d=min(closest(low,mid),closest(mid+1,high));
    for(i=low,k=0;i<=high;i++)//把x坐标在p[mid].x-d  ~  p[mid].x+d范围内的点筛选出来
    {
        if(p[i].x >=p[mid].x-d&&p[i].x<=p[mid].x+d)
            a[k++]=i;//保存这些点的下标索引
    }
    sort(a,a+k,cmpy);//按y坐标进行升序排序
    for(i=0;i<k;i++)
    {
        for(j=i+1;j<k;j++)
        {
            if(p[a[j]].y-p[a[i]].y>=d)//注意下标索引
                break;
            d=min(d,dis(p[a[i]],p[a[j]]));
        }
    }
    return d;
}
int main()
{
    int i,n;
    while(scanf("%d",&n) != EOF)//n个点
    {
        for(i = 0 ; i < n ; ++i)
            scanf("%lf %lf",&p[i].x,&p[i].y);
        sort(p , p + n , cmpx);//按x坐标进行升序排序
        printf("%.2f\n",closest(0 , n - 1));//最近点对间的距离
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值