最小生成树之kruskal算法

本文详细介绍了最小生成树算法的核心原理,通过边排序和并查集的数据结构,有效地找到了图中权重最小的边,构建了最小生成树。此算法在计算机科学领域具有广泛的应用,尤其在寻找网络最优连接方案时非常实用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法原理,,注意到边权最小的边肯定在最小生成树里

所以我们只要把边排序后不断的找到当前图中最短的一条边,只要该边的两个顶点不属于同一个集合,我们就把边添加进来,然后合并两个集合,,直到找到最小生成树。

简单一句话就是“边排序,并查集”。

struct edge{
	int u, v, c;
	bool operator<(const edge&op)const{
		return c < op.c;
	}
};

edge e[1000005];
int father[100005];

int find(int x){
	if (x == father[x])return x;
	return father[x] = find(father[x]);
}

int kruscal(int n, int m){
	for (int i = 1; i <= n; i++)father[i] = i;
	sort(e, e + m);

	int ret = 0;
	
	for (int i = 0; i < m; i++){
		int u = e[i].u, v = e[i].v, c = e[i].c;
		u = find(u);
		v = find(v);
		if (u != v){
			father[v] = u;
			ret += c;
		}
	}
	return ret;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值