本来呢觉得求出来SG函数后很简单的,但是呢,MLE无数次之后发现脑洞开的有点大了。
看了一下SG表,找到了规律:当n和m同为奇数时先手必败。
还是简单在这里提一下怎么打一张SG表就可以求出所有的n,m组合。
题意就是让你从右上角移动到左下角,棋盘大小为n*m,那么肯定有SG[n][1]=0
然后不断向右上角拓展就成了直到2000,对于给定的n,m,我们访问SG[2001-n][m]就可以了。
#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
using namespace std;
/*int SG[2001][2001];
bool vis[4];
void getSG(int N,int M){
SG[N][1] = 0;
//填满最后一行
for (int i = 2; i <= M; i++){
SG[N][i] = SG[N][i - 1] == 0 ? 1 : 0;
}
//填满第一列
for (int j = N - 1; j >= 1; j--){
SG[j][1] = SG[j + 1][1] == 0 ? 1 : 0;
}
for (int i = 2; i <= M; i++){
//倒着填每一行
for (int j = N - 1; j >= 1; j--){
memset(vis, false, sizeof vis);
if (SG[j + 1][i] <= 3)vis[SG[j + 1][i]] = true;
if (SG[j][i - 1] <= 3)vis[SG[j][i - 1]] = true;
if (SG[j + 1][i - 1] <= 3)vis[SG[j + 1][i - 1]] = true;
for (int k = 0; k < 4; k++){
if (!vis[k]){
SG[j][i] = k;
break;
}
}
}
}
}*/
int main(){
int n, m;
//getSG(2000, 2000);
while (scanf("%d %d", &n, &m)){
/*if (n == 0 && m == 0)break;
n = 2001 - n;
if (SG[n][m] == 0)printf("What a pity!\n");
else printf("Wonderful!\n");*/
if ((n & 1) && (m & 1))printf("What a pity!\n");
else printf("Wonderful!\n");
}
return 0;
}