HDU 2147kiki's game(SG函数,找规律)

本文探讨了如何通过构建SG表解决一类特定的博弈问题,总结了当n和m均为奇数时先手必败的规律,并提供了一个简洁的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本来呢觉得求出来SG函数后很简单的,但是呢,MLE无数次之后发现脑洞开的有点大了。

看了一下SG表,找到了规律:当n和m同为奇数时先手必败。

还是简单在这里提一下怎么打一张SG表就可以求出所有的n,m组合。

题意就是让你从右上角移动到左下角,棋盘大小为n*m,那么肯定有SG[n][1]=0

然后不断向右上角拓展就成了直到2000,对于给定的n,m,我们访问SG[2001-n][m]就可以了。


#pragma warning(disable:4996)
#include <cstdio>
#include <cstring>
using namespace std;

/*int SG[2001][2001];
bool vis[4];

void getSG(int N,int M){
	SG[N][1] = 0;
	//填满最后一行
	for (int i = 2; i <= M; i++){
		SG[N][i] = SG[N][i - 1] == 0 ? 1 : 0;
	}
	//填满第一列
	for (int j = N - 1; j >= 1; j--){
		SG[j][1] = SG[j + 1][1] == 0 ? 1 : 0;
	}

	for (int i = 2; i <= M; i++){
		//倒着填每一行
		for (int j = N - 1; j >= 1; j--){
			memset(vis, false, sizeof vis);
			if (SG[j + 1][i] <= 3)vis[SG[j + 1][i]] = true;
			if (SG[j][i - 1] <= 3)vis[SG[j][i - 1]] = true;
			if (SG[j + 1][i - 1] <= 3)vis[SG[j + 1][i - 1]] = true;

			for (int k = 0; k < 4; k++){
				if (!vis[k]){
					SG[j][i] = k;
					break;
				}
			}

		}
	}

}*/

int main(){
	int n, m;
	//getSG(2000, 2000);
	while (scanf("%d %d", &n, &m)){
		/*if (n == 0 && m == 0)break;
		n = 2001 - n;
		if (SG[n][m] == 0)printf("What a pity!\n");
		else printf("Wonderful!\n");*/
		if ((n & 1) && (m & 1))printf("What a pity!\n");
		else printf("Wonderful!\n");
	}
	return 0;
}


内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值