P67, 3-8 约瑟夫问题
上一篇文章中提到了使用链表模拟约瑟夫问题求解。约瑟夫问题是这样的 :假设有N个人决定选出一名领导,将所有人排成一个圆周,从1编号到N。现在从1开始,数M个人,最后的M出列。重复上述步骤,直到只剩下一个人,该人即为领导。
首先定义链表的数据结构:
typedef struct node *link;
struct node
{
int item;
link next;
};
将node称为节点。现要删除节点p->next,只需要使p->next=p->next->next。
void sim_joseph() // 链表模拟
{
link p, t;
t = p = (link)malloc(sizeof(node)), p->item = 1, p->next = p;
for(int i = 2; i <= n; ++ i)
{
p = (p->next = (link)malloc(sizeof(node)));
p->item = i;
}
p->next = t;
for(int i = 0; i < n - 1; ++ i) // n - 1 times execute
{
for(int j = 0; j < m - 1; ++ j)
p = p->next;
//printf("%d is killed\n", p->next->item);
t = p->next;
p->next = p->next->next;
free(t);
}
printf("%d remains alive\n", p->item);
free(p);
}
显然,该算法的复杂度为
O(N∗M)
有没有更好的算法?答案是肯定的。
假设有一个N=6,M=2的样例,也就是6个人围成一圈,每次报2个数,直到最后一个人。
样例的流程如下:
为了便于理解,我们将N=6,5,4时的最后一个人先利用链表法计算出来:
N=5,M=2时,最后的结果为3,记
F(5,2)=3
同理得,
F(4,2)=1
,
F(6,2)=5
将所有编号减1(为了计算的简便性,此时
F(5,2)=2
,
F(6,2)=4
),分析第一步:
在1号选手被淘汰出局后,剩下的五人实际上重新组成了一个新的约瑟夫问题 F(5,2) ,唯一的区别就是,新一局的选手0在上一局里面编号为2,选手1在上一局编号为3,以此类推。可以建立一个映射关系:
其中 H˜(x) 代表新一局里面的编号, N 为当前问题人数
易见,在5人问题中最后的胜者2,在6人问题中编号为4。
同理,在4人问题中最后的胜者1,在5人问题中编号为3。
如此递推,存在边界:1人问题最后胜者为0。从1人问题依次反推就得到解。
该算法的复杂度为
完整的程序如下:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
typedef struct node *link;
struct node
{
int item;
link next;
};
int n, m;
void linear_joseph() // 递推
{
int ans = 0;
for(int i = 2; i <= n; ++ i)
{
ans = (ans + m) % i;
}
printf("linear shows %d remains alive\n", ans + 1);
}
void sim_joseph() // 链表模拟
{
link p, t;
t = p = (link)malloc(sizeof(node)), p->item = 1, p->next = p;
for(int i = 2; i <= n; ++ i)
{
p = (p->next = (link)malloc(sizeof(node)));
p->item = i;
}
p->next = t;
for(int i = 0; i < n - 1; ++ i) // n - 1 times execute
{
for(int j = 0; j < m - 1; ++ j)
p = p->next;
//printf("%d is killed\n", p->next->item);
t = p->next;
p->next = p->next->next;
free(t);
}
printf("sim shows %d remains alive\n", p->item);
free(p);
}
int main()
{
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
while(scanf("%d%d", &n, &m) != EOF)
{
sim_joseph();
linear_joseph();
}
return 0;
}