数据库操作-DQL

数据库操作-DQL

1 介绍

DQL英文全称是Data Query Language(数据查询语言),用来查询数据库表中的记录。
查询关键字:SELECT
查询操作是所有SQL语句当中最为常见,也是最为重要的操作。在一个正常的业务系统中,查询操作的使用频次是要远高于增删改操作的。当我们打开某个网站或APP所看到的展示信息,都是通过从数据库中查询得到的,而在这个查询过程中,还会涉及到条件、排序、分页等操作。

2 语法

DQL查询语句,语法结构如下:

SELECT
    字段列表
FROM
    表名列表
WHERE
    条件列表
GROUP  BY
    分组字段列表
HAVING
    分组后条件列表
ORDER BY
    排序字段列表
LIMIT
    分页参数

我们今天会将上面的完整语法拆分为以下几个部分学习:

  • 基本查询(不带任何条件)
  • 条件查询(where)
  • 分组查询(group by)
  • 排序查询(order by)
  • 分页查询(limit)

准备一些测试数据用于查询操作:

create database db02; -- 创建数据库
use db02; -- 切换数据库
-- 员工管理(带约束)
create table tb_emp (
    id int unsigned primary key auto_increment comment 'ID',
    username varchar(20) not null unique comment '用户名',
    password varchar(32) default '123456' comment '密码',
    name varchar(10) not null comment '姓名',
    gender tinyint unsigned not null comment '性别, 说明: 1 男, 2 女',
    image varchar(300) comment '图像',
    job tinyint unsigned comment '职位, 说明: 1 班主任,2 讲师, 3 学工主管, 4 教研主管',
    entrydate date comment '入职时间',
    create_time datetime not null comment '创建时间',
    update_time datetime not null comment '修改时间'
) comment '员工表';

-- 准备测试数据
INSERT INTO tb_emp (id, username, password, name, gender, image, job, entrydate, create_time, update_time) VALUES
    (1, 'jinyong', '123456', '金庸', 1, '1.jpg', 4, '2000-01-01', '2022-10-27 16:35:33', '2022-10-27 16:35:35'),
    (2, 'zhangwuji', '123456', '张无忌', 1, '2.jpg', 2, '2015-01-01', '2022-10-27 16:35:33', '2022-10-27 16:35:37'),
    (3, 'yangxiao', '123456', '杨逍', 1, '3.jpg', 2, '2008-05-01', '2022-10-27 16:35:33', '2022-10-27 16:35:39'),
    (4, 'weiyixiao', '123456', '韦一笑', 1, '4.jpg', 2, '2007-01-01', '2022-10-27 16:35:33', '2022-10-27 16:35:41'),
    (5, 'changyuchun', '123456', '常遇春', 1, '5.jpg', 2, '2012-12-05', '2022-10-27 16:35:33', '2022-10-27 16:35:43'),
    (6, 'xiaozhao', '123456', '小昭', 2, '6.jpg', 3, '2013-09-05', '2022-10-27 16:35:33', '2022-10-27 16:35:45'),
    (7, 'jixiaofu', '123456', '纪晓芙', 2, '7.jpg', 1, '2005-08-01', '2022-10-27 16:35:33', '2022-10-27 16:35:47'),
    (8, 'zhouzhiruo', '123456', '周芷若', 2, '8.jpg', 1, '2014-11-09', '2022-10-27 16:35:33', '2022-10-27 16:35:49'),
    (9, 'dingminjun', '123456', '丁敏君', 2, '9.jpg', 1, '2011-03-11', '2022-10-27 16:35:33', '2022-10-27 16:35:51'),
    (10, 'zhaomin', '123456', '赵敏', 2, '10.jpg', 1, '2013-09-05', '2022-10-27 16:35:33', '2022-10-27 16:35:53'),
    (11, 'luzhangke', '123456', '鹿杖客', 1, '11.jpg', 2, '2007-02-01', '2022-10-27 16:35:33', '2022-10-27 16:35:55'),
    (12, 'hebiweng', '123456', '鹤笔翁', 1, '12.jpg', 2, '2008-08-18', '2022-10-27 16:35:33', '2022-10-27 16:35:57'),
    (13, 'fangdongbai', '123456', '方东白', 1, '13.jpg', 1, '2012-11-01', '2022-10-27 16:35:33', '2022-10-27 16:35:59'),
    (14, 'zhangsanfeng', '123456', '张三丰', 1, '14.jpg', 2, '2002-08-01', '2022-10-27 16:35:33', '2022-10-27 16:36:01'),
    (15, 'yulianzhou', '123456', '俞莲舟', 1, '15.jpg', 2, '2011-05-01', '2022-10-27 16:35:33', '2022-10-27 16:36:03'),
    (16, 'songyuanqiao', '123456', '宋远桥', 1, '16.jpg', 2, '2010-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:05'),
    (17, 'chenyouliang', '12345678', '陈友谅', 1, '17.jpg', null, '2015-03-21', '2022-10-27 16:35:33', '2022-10-27 16:36:07'),
    (18, 'zhang1', '123456', '张一', 1, '2.jpg', 2, '2015-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:09'),
    (19, 'zhang2', '123456', '张二', 1, '2.jpg', 2, '2012-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:11'),
    (20, 'zhang3', '123456', '张三', 1, '2.jpg', 2, '2018-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:13'),
    (21, 'zhang4', '123456', '张四', 1, '2.jpg', 2, '2015-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:15'),
    (22, 'zhang5', '123456', '张五', 1, '2.jpg', 2, '2016-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:17'),
    (23, 'zhang6', '123456', '张六', 1, '2.jpg', 2, '2012-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:19'),
    (24, 'zhang7', '123456', '张七', 1, '2.jpg', 2, '2006-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:21'),
    (25, 'zhang8', '123456', '张八', 1, '2.jpg', 2, '2002-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:23'),
    (26, 'zhang9', '123456', '张九', 1, '2.jpg', 2, '2011-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:25'),
    (27, 'zhang10', '123456', '张十', 1, '2.jpg', 2, '2004-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:27'),
    (28, 'zhang11', '123456', '张十一', 1, '2.jpg', 2, '2007-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:29'),
    (29, 'zhang12', '123456', '张十二', 1, '2.jpg', 2, '2020-01-01', '2022-10-27 16:35:33', '2022-10-27 16:36:31');

3 基本查询

在基本查询的DQL语句中,不带任何的查询条件,语法如下:
查询多个字段

  • select 字段1, 字段2, 字段3 from 表名;

查询所有字段(通配符)

  • select * from 表名;

设置别名

  • select 字段1 [ as 别名1 ] , 字段2 [ as 别名2 ] from 表名;

去除重复记录

  • select distinct 字段列表 from 表名;

案例:查询指定字段 name,entrydate并返回
select name,entrydate from tb_emp;
image.png

4 条件查询

语法:
select 字段列表 from 表名 where 条件列表 ; – 条件列表:意味着可以有多个条件
学习条件查询就是学习条件的构建方式,而在SQL语句当中构造条件的运算符分为两类:

  • 比较运算符
  • 逻辑运算符

常用的比较运算符如下:

比较运算符功能
>大于
>=大于等于
<小于
<=小于等于
=等于
<> 或 !=不等于
between … and …在某个范围之内(含最小、最大值)
in(…)在in之后的列表中的值,多选一
like 占位符模糊匹配(_匹配单个字符, %匹配任意个字符)
is null是null

常用的逻辑运算符如下:

逻辑运算符功能
and 或 &&并且 (多个条件同时成立)
or 或 ||或者 (多个条件任意一个成立)
not 或 !非 , 不是

案例:查询 姓名 为 杨逍 的员工

select id, username, password, name, gender, image, job, entrydate, create_time, update_time
from tb_emp
where name = '杨逍'; -- 字符串使用''或""包含

image.png

5 聚合函数

之前我们做的查询都是横向查询,就是根据条件一行一行的进行判断,而使用聚合函数查询就是纵向查询,它是对一列的值进行计算,然后返回一个结果值。(将一列数据作为一个整体,进行纵向计算)
语法:
select 聚合函数(字段列表) from 表名 ;
注意 : 聚合函数会忽略空值,对NULL值不作为统计。
常用聚合函数:

函数功能
count统计数量
max最大值
min最小值
avg平均值
sum求和

count :按照列去统计有多少行数据。

  • 在根据指定的列统计的时候,如果这一列中有null的行,该行不会被统计在其中。

sum :计算指定列的数值和,如果不是数值类型,那么计算结果为0
max :计算指定列的最大值
min :计算指定列的最小值
avg :计算指定列的平均值
案例:统计该企业员工数量

# count(字段)
select count(id) from tb_emp;-- 结果:29
select count(job) from tb_emp;-- 结果:28 (聚合函数对NULL值不做计算)

# count(常量)
select count(0) from tb_emp;
select count('A') from tb_emp;

# count(*)  推荐此写法(MySQL底层进行了优化)
select count(*) from tb_emp;

6 分组查询

分组: 按照某一列或者某几列,把相同的数据进行合并输出。
分组其实就是按列进行分类(指定列下相同的数据归为一类),然后可以对分类完的数据进行合并计算。
分组查询通常会使用聚合函数进行计算。
语法:
select 字段列表 from 表名 [where 条件] group by 分组字段名 [having 分组后过滤条件];
案例1:根据性别分组 , 统计男性和女性员工的数量

select gender, count(*)
from tb_emp
group by gender; -- 按照gender字段进行分组(gender字段下相同的数据归为一组)

image.png
案例2:查询入职时间在 ‘2015-01-01’ (包含) 以前的员工 , 并对结果根据职位分组 , 获取员工数量大于等于2的职位

select job, count(*)
from tb_emp
where entrydate <= '2015-01-01'   -- 分组前条件
group by job                      -- 按照job字段分组
having count(*) >= 2;             -- 分组后条件

image.png
注意事项:
• 分组之后,查询的字段一般为聚合函数和分组字段,查询其他字段无任何意义
• 执行顺序:where > 聚合函数 > having
where与having区别

  • 执行时机不同:where是分组之前进行过滤,不满足where条件,不参与分组;而having是分组之后对结果进行过滤。
  • 判断条件不同:where不能对聚合函数进行判断,而having可以。

7 排序查询

排序在日常开发中是非常常见的一个操作,有升序排序,也有降序排序。
语法:

select  字段列表  
from   表名   
[where  条件列表] 
[group by  分组字段 ] 
order  by  字段1  排序方式1 , 字段2  排序方式2 … ;
  • 排序方式:
    • ASC :升序(默认值)
    • DESC:降序

案例1:根据入职时间, 对员工进行升序排序

select id, username, password, name, gender, image, job, entrydate, create_time, update_time
from tb_emp
order by entrydate ASC; -- 按照entrydate字段下的数据进行升序排序

select id, username, password, name, gender, image, job, entrydate, create_time, update_time
from tb_emp
order by  entrydate; -- 默认就是ASC(升序)

image.png
注意事项:如果是升序, 可以不指定排序方式ASC

8 分页查询

分页操作在业务系统开发时,也是非常常见的一个功能,日常我们在网站中看到的各种各样的分页条,后台也都需要借助于数据库的分页操作。
分页查询语法:
select 字段列表 from 表名 limit 起始索引, 查询记录数 ;
案例1:从起始索引0开始查询员工数据, 每页展示5条记录

select id, username, password, name, gender, image, job, entrydate, create_time, update_time
from tb_emp
limit 0 , 5; -- 从索引0开始,向后取5条记录

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值