leetcode数论(2447. 最大公因数等于 K 的子数组数目)-公约数性质

 前言

经过前期的数据结构和算法学习,开始以OD机考题作为练习题,继续加强下熟练程度。

描述

给你一个整数数组 nums 和一个整数 k ,请你统计并返回 nums 的子数组中元素的最大公因数等于 k 的子数组数目。

子数组 是数组中一个连续的非空序列。

数组的最大公因数 是能整除数组中所有元素的最大整数。

示例 1:

输入:nums = [9,3,1,2,6,3], k = 3
输出:4
解释:nums 的子数组中,以 3 作为最大公因数的子数组如下:
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]
- [9,3,1,2,6,3]

示例 2:

输入:nums = [4], k = 7
输出:0
解释:不存在以 7 作为最大公因数的子数组。

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i], k <= 109

实现原理与步骤

本体采用枚举的方法。

1.划分连续区间

2.求最大公因数(公约数)

3.连续区间判断最大公约数

实现代码

class Solution {
    public int subarrayGCD(int[] nums, int k) {
        int res=0;
        for(int i=0;i<nums.length;i++){
            int g=0;
            for(int j=i;j<nums.length;j++){
                g=gcd(g,nums[j]);   
                if(g%k!=0)break;
                if(g==k) res++;
            }
            
        }
        return res;

    }

    public int gcd(int a,int b){
        while(b!=0){
            int temp=b;
            b=a%b;
            a=temp;
        }
        return a;
    }
}

1.QA:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值