省选的数论

1.\(n=\sum_{d|n}\phi(d)\)的证明:
\(d\)\(\phi(d)\)个与之互质的数,分别是\(p1,p2\cdots\)\(a=\frac n d\times p_x\)满足\(gcd(a,n)=\frac n d\)且能够取遍每一个\(gcd(x,n)=\frac n d\)的数,显然每个数只有一中固定表示法,且一定会被取到,证毕。

2.二次探测定理的疑惑的证明:
\(x^2-1=(x+1)(x-1)\)\(p\)的倍数,当\(p\)是质数,那么\(p\)不可分割,p这个因子要么在\((x+1)\)中,要么在\((x-1)\)中,即\(x=\pm1\),而如果\(p\)不是质数那么\(p\)可能分散在两部分中,于是x可能等于其他值,证毕。

3.约数函数有关:
约数和的求法:线性筛。例子
约数个数和的求法:线性筛。

约数个数和的性质:
\(1.\) \[\sigma(i\times j)=\sum_{x|i}\sum_{y|j} [gcd(x,y)=1]\]
证明:对于\(i\times j\)的一个约数,如果某一个质因子次数\(c_z\)大于\(c_i\)的那就令\(c_x=0\)\(c_y\)\(c_z-c_i\),否则\(c_x\)\(c_z\)\(c_y=0\)这样可以使约数与互质的\(x,y\)一一对应。
\(2.\) \[\sum_{i=1}^n \lfloor \frac n i\rfloor=\sum_{i=1}^n \sigma(i)\]
(算每个数作为约数的贡献)

4.欧拉函数:
\[\varphi(n)=n\times \prod_{p|n}\frac{p-1}{p}\]
\[\varphi(p^k)=p^k-p^{k-1}\]
\[\gcd(m,n)=1,\varphi(m\times n)=\varphi(m)\times \varphi(n)\]
\[\sum_{\gcd(i,n)=1}i=\frac{\varphi(n)\times n}{2}\]
\[\sum_{d|n}\varphi(d)=n\]

5.自适应辛普森法:
用来求积分。
对于二次函数\(f(x),\int_a^b f(x)dx=\frac{[f(a)+f(b)+4\times f(\frac{a+b}{2})]\times (b-a)}{6}\)
然后把所求函数近似看成一段段二次函数,如果把\([l,r]\)看成二次函数的结果与把\([l,mid][mid+1,r]\)分别看成二次函数的结果相同,那我们就取近似值,否则二分。

4.狄利克雷卷积&杜教筛:
\(1.\)狄利克雷卷积:
\[(f*~g)(i)=\sum_{d|i}g(d)\times f(\frac i d)\]
\(2.\)由上式推导可得:\(\sum_{i=1}^n(f*~g)(i)\)
\[=\sum_{i=1}^n\sum_{d|i}g(d)\times f(\frac i d)\]
\[=\sum_{d=1}^n\sum_{i=1}^{\lfloor \frac n d\rfloor}g(d)\times f(i)\]
\[=\sum_{d=1}^n g(d)\sum_{i=1}^{\lfloor \frac n d\rfloor}\times f(i)\]
\[=\sum_{d=1}^n g(d)S_f(\lfloor \frac n d \rfloor)\]
\(3.\)由此可得:\(g(1)S_f(n)=\)
\[=\sum_{d=1}^ng(d)S(\lfloor \frac n d \rfloor)-\sum_{d=2}^ng(d)S_f(\lfloor \frac n d \rfloor)\]
\[=\sum_{i=1}^n(f*~g)(i)-\sum_{d=2}^ng(d)S_f(\lfloor \frac n d \rfloor)\]
\(4.\)求函数\(f(x)\)的前缀和,只需构造出函数\(g(x)\)使得\(S_g(x)\)\((f*~g)\)都好求即可利用递归和整除分块\(O(n^{\frac 3 4})\)求出\(S_f(n)\)
\(5.\)优化:

  • 线性筛出\(1-n^{\frac 2 3}\)使复杂度若递归参数小于\(n^{\frac 2 3}\)则返回预处理的值,是复杂度降到\(O(n^{\frac 2 3})\)
  • \(Hash\_table\)记忆化已经求出的值,需要开到\(T\times \frac n N\)

\(6.\)常见函数:
\[(\mu*~I)(x)=e(x)\]
\[(\varphi*~I)(x)=id(x)\]
\[(\mu*~id)(x)=\varphi(x)\]

\(mod\)质数意义下\(1\)~\(n-1\)逆元互不相同。

转载于:https://www.cnblogs.com/Smeow/p/10582561.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CSDN IT狂飙上传的代码均可运行,功能ok的情况下才上传的,直接替换数据即可使用,小白也能轻松上手 【资源说明】 基于MATLAB实现的有限差分法实验报告用MATLAB中的有限差分法计算槽内电位;对比解析法和数值法的异同点;选取一点,绘制收敛曲线;总的三维电位图+使用说明文档 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2020b;若运行有误,根据提示GPT修改;若不会,私信博主(问题描述要详细); 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可后台私信博主; 4.1 期刊或参考文献复现 4.2 Matlab程序定制 4.3 科研合作 功率谱估计: 故障诊断分析: 雷达通信:雷达LFM、MIMO、成像、定位、干扰、检测、信号分析、脉冲压缩 滤波估计:SOC估计 目标定位:WSN定位、滤波跟踪、目标定位 生物电信号:肌电信号EMG、脑电信号EEG、心电信号ECG 通信系统:DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测识别融合、LEACH协议、信号检测、水声通信 5、欢迎下载,沟通交流,互相学习,共同进步!

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值